» Articles » PMID: 34858682

Investigation of Methods to Extract Confocal Function Parameters for the Depth Resolved Determination of Attenuation Coefficients Using OCT in Intralipid Samples, Titanium Oxide Phantoms, and in Vivo Human Retinas

Overview
Specialty Radiology
Date 2021 Dec 3
PMID 34858682
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The attenuation coefficient provides a quantitative parameter for tissue characterization and can be calculated from optical coherence tomography (OCT) data, but accurate determination requires compensation for the confocal function. We present extensive measurement series for extraction of the focal plane and the apparent Rayleigh length from the ratios of OCT images acquired with different focus depths and compare these results with two alternative approaches. By acquiring OCT images for a range of different focus depths the optimal focus plane difference is determined for intralipid and titanium oxide (TiO) phantoms with different scatterer concentrations, which allows for calculation of the attenuation coefficient corrected for the confocal function. The attenuation coefficient is determined for homogeneous intralipid and TiO samples over a wide range of concentrations. We further demonstrate very good reproducibility of the determined attenuation coefficient of layers with identical scatter concentrations in a multi-layered phantom. Finally, this method is applied to in vivo retinal data.

Citing Articles

Basis function model to extract the combined confocal and fall-off function from multiple optical coherence tomography A-scans.

Phan D, Were M, Weitkamp J, Bowden A J Biomed Opt. 2025; 30(2):025003.

PMID: 40027922 PMC: 11868661. DOI: 10.1117/1.JBO.30.2.025003.


Chromatic dispersion based axial length estimation using retinal spectral domain optical coherence tomography.

Kubler J, Fischer J, de Boer J Biomed Opt Express. 2025; 16(2):793-805.

PMID: 39958855 PMC: 11828442. DOI: 10.1364/BOE.553735.


Optical coherence tomography enables longitudinal evaluation of cell graft-directed remodeling in stroke lesions.

Adewumi H, Simkulet M, Kureli G, Giblin J, Lopez A, Erdener S Exp Neurol. 2024; 385:115117.

PMID: 39694221 PMC: 11781960. DOI: 10.1016/j.expneurol.2024.115117.


Accurate attenuation characterization in optical coherence tomography using multi-reference phantoms and deep learning.

Peng N, Xu C, Shen Y, Yuan W, Yang X, Qi C Biomed Opt Express. 2024; 15(12):6697-6714.

PMID: 39679392 PMC: 11640581. DOI: 10.1364/BOE.543606.


Theoretical and experimental determination of the confocal function of OCT systems for accurate calculation of sample optical properties.

Buist G, Debiasi M, Amelink A, de Boer J Biomed Opt Express. 2024; 15(5):2937-2957.

PMID: 38855667 PMC: 11161342. DOI: 10.1364/BOE.516229.


References
1.
Girard M, Strouthidis N, Ethier C, Mari J . Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci. 2011; 52(10):7738-48. DOI: 10.1167/iovs.10-6925. View

2.
Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher A . In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002; 7(3):457-63. DOI: 10.1117/1.1482379. View

3.
Almasian M, Bosschaart N, van Leeuwen T, Faber D . Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime. J Biomed Opt. 2016; 20(12):121314. DOI: 10.1117/1.JBO.20.12.121314. View

4.
de Boer J, Saxer C, Nelson J . Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. Appl Opt. 2008; 40(31):5787-90. DOI: 10.1364/ao.40.005787. View

5.
Stefan S, Jeong K, Polucha C, Tapinos N, Toms S, Lee J . Determination of confocal profile and curved focal plane for OCT mapping of the attenuation coefficient. Biomed Opt Express. 2018; 9(10):5084-5099. PMC: 6179411. DOI: 10.1364/BOE.9.005084. View