» Articles » PMID: 26126286

Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data

Overview
Date 2015 Jul 1
PMID 26126286
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

We present a method for automated, depth-resolved extraction of the attenuation coefficient from Optical Coherence Tomography (OCT) data. In contrast to previous automated, depth-resolved methods, the Depth-Resolved Confocal (DRC) technique derives an invertible mapping between the measured OCT intensity data and the attenuation coefficient while considering the confocal function and sensitivity fall-off, which are critical to ensure accurate measurements of the attenuation coefficient in practical settings (e.g., clinical endoscopy). We also show that further improvement of the estimated attenuation coefficient is possible by formulating image denoising as a convex optimization problem that we term Intensity Weighted Horizontal Total Variation (iwhTV). The performance and accuracy of DRC alone and DRC+iwhTV are validated with simulated data, optical phantoms, and ex-vivo porcine tissue. Our results suggest that implementation of DRC+iwhTV represents a novel way to improve OCT contrast for better tissue characterization through quantitative imaging.

Citing Articles

Optical attenuation coefficient decorrelation-based optical coherence tomography angiography for microvascular evaluation of Alzheimer's disease on mice.

Xiang B, Ding N, Jiang H, Liu J, Yu Y, Luan J Neurophotonics. 2025; 12(1):015013.

PMID: 40078532 PMC: 11899147. DOI: 10.1117/1.NPh.12.1.015013.


Basis function model to extract the combined confocal and fall-off function from multiple optical coherence tomography A-scans.

Phan D, Were M, Weitkamp J, Bowden A J Biomed Opt. 2025; 30(2):025003.

PMID: 40027922 PMC: 11868661. DOI: 10.1117/1.JBO.30.2.025003.


Confocal corrected attenuation coefficient imaging in phantoms and using chromatic focal shift calibration.

Kubler J, Zoutenbier V, Buist G, Fischer J, Amelink A, de Boer J Biomed Opt Express. 2023; 14(10):5282-5297.

PMID: 37854560 PMC: 10581799. DOI: 10.1364/BOE.498459.


Depth-dependent attenuation and backscattering characterization of optical coherence tomography by stationary iterative method.

Wang Y, Wei S, Kang J J Biomed Opt. 2023; 28(8):085002.

PMID: 37638109 PMC: 10449262. DOI: 10.1117/1.JBO.28.8.085002.


Multiparameter interferometric polarization-enhanced imaging differentiates carcinoma from inflammation of the bladder: an study.

Chang S, Giannico G, Haugen E, Jardaneh A, Baba J, Mahadevan-Jansen A J Biomed Opt. 2023; 28(10):102907.

PMID: 37576611 PMC: 10415042. DOI: 10.1117/1.JBO.28.10.102907.


References
1.
van der Schoot J, Vermeer K, de Boer J, Lemij H . The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images. Invest Ophthalmol Vis Sci. 2012; 53(4):2424-30. DOI: 10.1167/iovs.11-8436. View

2.
van der Meer F, Faber D, Baraznji Sassoon D, Aalders M, Pasterkamp G, van Leeuwen T . Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging. 2005; 24(10):1369-76. DOI: 10.1109/TMI.2005.854297. View

3.
Girard M, Strouthidis N, Ethier C, Mari J . Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci. 2011; 52(10):7738-48. DOI: 10.1167/iovs.10-6925. View

4.
Duan L, Marvdashti T, Lee A, Tang J, Ellerbee A . Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography. Biomed Opt Express. 2014; 5(10):3717-29. PMC: 4206336. DOI: 10.1364/BOE.5.003717. View

5.
van Soest G, Goderie T, Regar E, Koljenovic S, van Leenders G, Gonzalo N . Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt. 2010; 15(1):011105. DOI: 10.1117/1.3280271. View