» Articles » PMID: 34824236

ScCODA is a Bayesian Model for Compositional Single-cell Data Analysis

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Nov 26
PMID 34824236
Citations 111
Authors
Affiliations
Soon will be listed here.
Abstract

Compositional changes of cell types are main drivers of biological processes. Their detection through single-cell experiments is difficult due to the compositionality of the data and low sample sizes. We introduce scCODA ( https://github.com/theislab/scCODA ), a Bayesian model addressing these issues enabling the study of complex cell type effects in disease, and other stimuli. scCODA demonstrated excellent detection performance, while reliably controlling for false discoveries, and identified experimentally verified cell type changes that were missed in original analyses.

Citing Articles

The Hydractinia cell atlas reveals cellular and molecular principles of cnidarian coloniality.

Salamanca-Diaz D, Horkan H, Garcia-Castro H, Emili E, Salinas-Saavedra M, Perez-Posada A Nat Commun. 2025; 16(1):2121.

PMID: 40032860 PMC: 11876637. DOI: 10.1038/s41467-025-57168-z.


Cellular crosstalk in organotypic vasculature: mechanisms of diabetic cardiorenal complications and SGLT2i responses.

Wang W, Liu Y, Xu Q, Liu L, Zhu M, Li Y Cardiovasc Diabetol. 2025; 24(1):90.

PMID: 40012066 PMC: 11866599. DOI: 10.1186/s12933-025-02655-2.


A single-cell atlas to map sex-specific gene-expression changes in blood upon neurodegeneration.

Grandke F, Fehlmann T, Kern F, Gate D, Wolff T, Leventhal O Nat Commun. 2025; 16(1):1965.

PMID: 40000636 PMC: 11862118. DOI: 10.1038/s41467-025-56833-7.


Fast, flexible analysis of differences in cellular composition with crumblr.

Hoffman G, Roussos P bioRxiv. 2025; .

PMID: 39975411 PMC: 11838391. DOI: 10.1101/2025.01.29.635498.


Biases in machine-learning models of human single-cell data.

Willem T, Shitov V, Luecken M, Kilbertus N, Bauer S, Piraud M Nat Cell Biol. 2025; 27(3):384-392.

PMID: 39972066 DOI: 10.1038/s41556-025-01619-8.


References
1.
Martin B, Witten D, Willis A . MODELING MICROBIAL ABUNDANCES AND DYSBIOSIS WITH BETA-BINOMIAL REGRESSION. Ann Appl Stat. 2020; 14(1):94-115. PMC: 7514055. DOI: 10.1214/19-aoas1283. View

2.
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland T . A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell. 2017; 169(7):1276-1290.e17. DOI: 10.1016/j.cell.2017.05.018. View

3.
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J . Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323(11):1061-1069. PMC: 7042881. DOI: 10.1001/jama.2020.1585. View

4.
Lin H, Peddada S . Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020; 11(1):3514. PMC: 7360769. DOI: 10.1038/s41467-020-17041-7. View

5.
Thomson W, Jabbari S, Taylor A, Arlt W, Smith D . Simultaneous parameter estimation and variable selection via the logit-normal continuous analogue of the spike-and-slab prior. J R Soc Interface. 2019; 16(150):20180572. PMC: 6364637. DOI: 10.1098/rsif.2018.0572. View