Extracellular Vesicles Fail to Trigger the Generation of New Cardiomyocytes in Chronically Infarcted Hearts
Overview
Authors
Affiliations
Extracellular vesicles (EV) mediate the therapeutic effects of stem cells but it is unclear whether this involves cardiac regeneration mediated by endogenous cardiomyocyte proliferation. Bi-transgenic MerCreMer/ZEG (n = 15/group) and Mosaic Analysis With Double Markers (MADM; n = 6/group) mouse models underwent permanent coronary artery ligation and received, 3 weeks later, 10 billion EV (from human iPS-derived cardiovascular progenitor cells [CPC]), or saline, injected percutaneously under echo guidance in the peri-infarcted myocardium. Endogenous cardiomyocyte proliferation was tracked by EdU labeling and biphoton microscopy. Other end points, including cardiac function (echocardiography and MRI), histology and transcriptomics were blindly assessed 4-6 weeks after injections. There was no proliferation of cardiomyocytes in either transgenic mouse strains. Nevertheless, EV improved cardiac function in both models. In MerCreMer/ZEG mice, LVEF increased by 18.3 ± 0.2% between baseline and the end-study time point in EV-treated hearts which contrasted with a decrease by 2.3 ± 0.2% in the PBS group; MADM mice featured a similar pattern as intra-myocardial administration of EV improved LVEF by 13.3 ± 0.16% from baseline whereas it decreased by 14.4 ± 0.16% in the control PBS-injected group. This functional improvement was confirmed by MRI and associated with a reduction in infarct size, the decreased expression of several pro-fibrotic genes and an overexpression of the anti-fibrotic miRNA 133-a1 compared to controls. Experiments with an anti-miR133-a demonstrated that the cardio-reparative effects of EV were partly abrogated. EV-CPC do not trigger cardiomyocyte proliferation but still improve cardiac function by other mechanisms which may include the regulation of fibrosis.
Yin X, Yi J, Mao F, Tang Q, Zhang X, Yang X Front Genet. 2025; 15:1407671.
PMID: 39882071 PMC: 11774887. DOI: 10.3389/fgene.2024.1407671.
Bois A, Grandela C, Gallant J, Mummery C, Menasche P NPJ Regen Med. 2025; 10(1):6.
PMID: 39843488 PMC: 11754855. DOI: 10.1038/s41536-025-00394-2.
Liu Y, Liu L, Zhuang P, Zou J, Chen X, Wu H BMC Med. 2024; 22(1):603.
PMID: 39736615 PMC: 11686908. DOI: 10.1186/s12916-024-03822-0.
First-in-man use of a cardiovascular cell-derived secretome in heart failure. Case report.
Menasche P, Renault N, Hagege A, Puscas T, Bellamy V, Humbert C EBioMedicine. 2024; 103:105145.
PMID: 38713924 PMC: 11096705. DOI: 10.1016/j.ebiom.2024.105145.
Che Shaffi S, Hairuddin O, Mansor S, Syafiq T, Yahaya B Tissue Eng Regen Med. 2024; 21(4):513-527.
PMID: 38598059 PMC: 11087396. DOI: 10.1007/s13770-024-00634-4.