» Articles » PMID: 34761556

Structures of Class I and Class II Transcription Complexes Reveal the Molecular Basis of RamA-Dependent Transcription Activation

Overview
Journal Adv Sci (Weinh)
Date 2021 Nov 11
PMID 34761556
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Transcription activator RamA is linked to multidrug resistance of Klebsiella pneumoniae through controlling genes that encode efflux pumps (acrA) and porin-regulating antisense RNA (micF). In bacteria, σ , together with activators, controls the majority of genes by recruiting RNA polymerase (RNAP) to the promoter regions. RNAP and σ form a holoenzyme that recognizes -35 and -10 promoter DNA consensus sites. Many activators bind upstream from the holoenzyme and can be broadly divided into two classes. RamA acts as a class I activator on acrA and class II activator on micF, respectively. The authors present biochemical and structural data on RamA in complex with RNAP-σ at the two promoters and the data reveal the molecular basis for how RamA assembles and interacts with core RNAP and activates transcription that contributes to antibiotic resistance. Further, comparing with CAP/TAP complexes reveals common and activator-specific features in activator binding and uncovers distinct roles of the two C-terminal domains of RNAP α subunit.

Citing Articles

RamA upregulates the ATP-binding cassette transporter to mediate resistance to tetracycline-class antibiotics and the stability of membranes in .

Zhao X, Zhang Y, Ju M, Yang Y, Liu H, Qin X Microbiol Spectr. 2025; 13(2):e0172824.

PMID: 39745369 PMC: 11792452. DOI: 10.1128/spectrum.01728-24.


Transcription activation in and .

Busby S, Browning D EcoSal Plus. 2024; 12(1):eesp00392020.

PMID: 38345370 PMC: 11636354. DOI: 10.1128/ecosalplus.esp-0039-2020.


Structural basis for transcription activation by the nitrate-responsive regulator NarL.

Kompaniiets D, He L, Wang D, Zhou W, Yang Y, Hu Y Nucleic Acids Res. 2024; 52(3):1471-1482.

PMID: 38197271 PMC: 10853779. DOI: 10.1093/nar/gkad1231.


Role of efflux pumps, their inhibitors, and regulators in colistin resistance.

Ding Y, Hao J, Xiao W, Ye C, Xiao X, Jian C Front Microbiol. 2023; 14:1207441.

PMID: 37601369 PMC: 10436536. DOI: 10.3389/fmicb.2023.1207441.


Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria.

Shi J, Feng Z, Xu J, Li F, Zhang Y, Wen A Proc Natl Acad Sci U S A. 2023; 120(22):e2300282120.

PMID: 37216560 PMC: 10235972. DOI: 10.1073/pnas.2300282120.


References
1.
Zheng J, Tian F, Cui S, Song J, Zhao S, Brown E . Differential gene expression by RamA in ciprofloxacin-resistant Salmonella Typhimurium. PLoS One. 2011; 6(7):e22161. PMC: 3139621. DOI: 10.1371/journal.pone.0022161. View

2.
Hudson B, Quispe J, Lara-Gonzalez S, Kim Y, Berman H, Arnold E . Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Proc Natl Acad Sci U S A. 2009; 106(47):19830-5. PMC: 2775702. DOI: 10.1073/pnas.0908782106. View

3.
Malan T, Kolb A, Buc H, McClure W . Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter. J Mol Biol. 1984; 180(4):881-909. DOI: 10.1016/0022-2836(84)90262-6. View

4.
Jair K, Martin R, Rosner J, Fujita N, Ishihama A, Wolf Jr R . Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. J Bacteriol. 1995; 177(24):7100-4. PMC: 177587. DOI: 10.1128/jb.177.24.7100-7104.1995. View

5.
Martin R, Gillette W, Rhee S, Rosner J . Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol. 1999; 34(3):431-41. DOI: 10.1046/j.1365-2958.1999.01599.x. View