» Articles » PMID: 34716688

High-Throughput and Dosage-Controlled Intracellular Delivery of Large Cargos by an Acoustic-Electric Micro-Vortices Platform

Overview
Journal Adv Sci (Weinh)
Date 2021 Oct 30
PMID 34716688
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

A high-throughput non-viral intracellular delivery platform is introduced for the transfection of large cargos with dosage-control. This platform, termed Acoustic-Electric Shear Orbiting Poration (AESOP), optimizes the delivery of intended cargo sizes with poration of the cell membranes via mechanical shear followed by the modulated expansion of these nanopores via electric field. Furthermore, AESOP utilizes acoustic microstreaming vortices wherein up to millions of cells are trapped and mixed uniformly with exogenous cargos, enabling the delivery of cargos into cells with targeted dosages. Intracellular delivery of a wide range of molecule sizes (<1 kDa to 2 MDa) with high efficiency (>90%), cell viability (>80%), and uniform dosages (<60% coefficient of variation (CV)) simultaneously into 1 million cells min per single chip is demonstrated. AESOP is successfully applied to two gene editing applications that require the delivery of large plasmids: i) enhanced green fluorescent protein (eGFP) plasmid (6.1 kbp) transfection, and ii) clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated gene knockout using a 9.3 kbp plasmid DNA encoding Cas9 protein and single guide RNA (sgRNA). Compared to alternative platforms, this platform offers dosage-controlled intracellular delivery of large plasmids simultaneously to large populations of cells while maintaining cell viability at comparable delivery efficiencies.

Citing Articles

Wireless Frequency-Multiplexed Acoustic Array-based Acoustofluidics.

Li J, Bo L, Li T, Zhao P, Du Y, Cai B Adv Mater Technol. 2025; 9(23).

PMID: 39906904 PMC: 11790274. DOI: 10.1002/admt.202400572.


Titrating chimeric antigen receptors on CAR T cells enabled by a microfluidic-based dosage-controlled intracellular mRNA delivery platform.

Chen Y, Mirza M, Jiang R, Lee A Biomicrofluidics. 2024; 18(6):064105.

PMID: 39713739 PMC: 11658821. DOI: 10.1063/5.0231595.


Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation.

Kim Y, Yun D, Lee J, Jung C, Chung A Nat Commun. 2024; 15(1):8099.

PMID: 39284842 PMC: 11405868. DOI: 10.1038/s41467-024-52493-1.


Quantitative analysis of electroporation-mediated intracellular delivery via bioorthogonal luminescent reaction.

Wang S, Shcherbii M, Hirvonen S, Silvennoinen G, Sarparanta M, Santos H Commun Chem. 2024; 7(1):181.

PMID: 39147836 PMC: 11327378. DOI: 10.1038/s42004-024-01266-4.


HiViPore: a highly viable in-flow compression for a one-step cell mechanoporation in microfluidics to induce a free delivery of nano- macro-cargoes.

Maremonti M, Panzetta V, Netti P, Causa F J Nanobiotechnology. 2024; 22(1):441.

PMID: 39068464 PMC: 11282774. DOI: 10.1186/s12951-024-02730-y.


References
1.
Maude S, Laetsch T, Buechner J, Rives S, Boyer M, Bittencourt H . Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018; 378(5):439-448. PMC: 5996391. DOI: 10.1056/NEJMoa1709866. View

2.
Wu Y, Wu T, Clemens D, Lee B, Wen X, Horwitz M . Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat Methods. 2015; 12(5):439-44. PMC: 5082232. DOI: 10.1038/nmeth.3357. View

3.
van Wamel A, Kooiman K, Harteveld M, Emmer M, Ten Cate F, Versluis M . Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release. 2006; 112(2):149-55. DOI: 10.1016/j.jconrel.2006.02.007. View

4.
Dixit H, Starr R, Dundon M, Pairs P, Yang X, Zhang Y . Massively-Parallelized, Deterministic Mechanoporation for Intracellular Delivery. Nano Lett. 2019; 20(2):860-867. PMC: 8210888. DOI: 10.1021/acs.nanolett.9b03175. View

5.
Lentacker I, De Cock I, Deckers R, De Smedt S, Moonen C . Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev. 2013; 72:49-64. DOI: 10.1016/j.addr.2013.11.008. View