» Articles » PMID: 34694619

MA RNA Immunoprecipitation Followed by High-Throughput Sequencing to Map N-Methyladenosine

Overview
Specialty Molecular Biology
Date 2021 Oct 25
PMID 34694619
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

N-methyladenosine (mA) is the most abundant internal modification on messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) in eukaryotes. It influences gene expression by regulating RNA processing, nuclear export, mRNA decay, and translation. Hence, mA controls fundamental cellular processes, and dysregulated deposition of mA has been acknowledged to play a role in a broad range of human diseases, including cancer. mA RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq or mA-seq) is a powerful technique to map mA in a transcriptome-wide level. After immunoprecipitation of fragmented polyadenylated (poly(A)) rich RNA by using specific anti-mA antibodies, both the immunoprecipitated RNA fragments together with the input control are subjected to massively parallel sequencing. The generation of such comprehensive methylation profiles of signal enrichment relative to input control is necessary in order to better comprehend the pathogenesis behind aberrant mA deposition.

Citing Articles

Role of N‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review).

Pan J, Tong F, Ren N, Ren L, Yang Y, Gao F Oncol Rep. 2024; 51(6).

PMID: 38757383 PMC: 11110010. DOI: 10.3892/or.2024.8747.


N-methylation in the development, diagnosis, and treatment of gastric cancer.

Wang J, Zhao G, Zhao Y, Zhao Z, Yang S, Zhou A J Transl Int Med. 2024; 12(1):5-21.

PMID: 38525439 PMC: 10956730. DOI: 10.2478/jtim-2023-0103.


The mA demethylases FTO and ALKBH5 aggravate the malignant progression of nasopharyngeal carcinoma by coregulating ARHGAP35.

Yang Z, Zhang S, Xiong J, Xia T, Zhu R, Miao M Cell Death Discov. 2024; 10(1):43.

PMID: 38263362 PMC: 10806234. DOI: 10.1038/s41420-024-01810-0.


METTL3 regulates breast cancer-associated alternative splicing switches.

Achour C, Bhattarai D, Groza P, Roman A, Aguilo F Oncogene. 2023; 42(12):911-925.

PMID: 36725888 PMC: 10020087. DOI: 10.1038/s41388-023-02602-z.


Epigenetics as "conductor" in "orchestra" of pluripotent states.

Baral I, Varghese P, Dutta D Cell Tissue Res. 2022; 390(2):141-172.

PMID: 35838826 DOI: 10.1007/s00441-022-03667-0.

References
1.
Boccaletto P, Machnicka M, Purta E, Piatkowski P, Baginski B, Wirecki T . MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2017; 46(D1):D303-D307. PMC: 5753262. DOI: 10.1093/nar/gkx1030. View

2.
Roundtree I, Evans M, Pan T, He C . Dynamic RNA Modifications in Gene Expression Regulation. Cell. 2017; 169(7):1187-1200. PMC: 5657247. DOI: 10.1016/j.cell.2017.05.045. View

3.
Huang H, Weng H, Zhou K, Wu T, Zhao B, Sun M . Histone H3 trimethylation at lysine 36 guides mA RNA modification co-transcriptionally. Nature. 2019; 567(7748):414-419. PMC: 6438714. DOI: 10.1038/s41586-019-1016-7. View

4.
Ke S, Pandya-Jones A, Saito Y, Fak J, Vagbo C, Geula S . mA mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 2017; 31(10):990-1006. PMC: 5495127. DOI: 10.1101/gad.301036.117. View

5.
Knuckles P, Carl S, Musheev M, Niehrs C, Wenger A, Buhler M . RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat Struct Mol Biol. 2017; 24(7):561-569. DOI: 10.1038/nsmb.3419. View