» Articles » PMID: 34694612

Identifying Protein Interactomes of Target RNAs Using HyPR-MS

Overview
Specialty Molecular Biology
Date 2021 Oct 25
PMID 34694612
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

RNA-protein interactions are integral to maintaining proper cellular function and homeostasis, and the disruption of key RNA-protein interactions is central to many disease states. HyPR-MS (hybridization purification of RNA-protein complexes followed by mass spectrometry) is a highly versatile and efficient technology which enables multiplexed discovery of specific RNA-protein interactomes. This chapter provides extensive guidance for successful application of HyPR-MS to the system and target RNA(s) of interest, as well as a detailed description of the fundamental HyPR-MS procedure, including: (1) experimental design of controls, capture oligonucleotides, and qPCR assays; (2) formaldehyde cross-linking of cell culture; (3) cell lysis and RNA solubilization; (4) isolation of target RNA(s); (5) RNA purification and RT-qPCR analysis; (6) protein preparation and mass spectrometric analysis; and (7) mass spectrometric data analysis.

Citing Articles

Identification of Host Proteins Involved in Hepatitis B Virus Genome Packaging.

Whitworth I, Romero S, Kissi-Twum A, Knoener R, Scalf M, Sherer N J Proteome Res. 2024; 23(9):4128-4138.

PMID: 39078123 PMC: 11693245. DOI: 10.1021/acs.jproteome.4c00505.


Defining Distinct RNA-Protein Interactomes of SARS-CoV-2 Genomic and Subgenomic RNAs.

Whitworth I, Knoener R, Puray-Chavez M, Halfmann P, Romero S, Baddouh M J Proteome Res. 2023; 23(1):149-160.

PMID: 38043095 PMC: 10804885. DOI: 10.1021/acs.jproteome.3c00506.


Elucidating the RNA-Protein Interactomes of Target RNAs in Tissue.

Whitworth I, Henke K, Yang B, Scalf M, Frey B, Jarrard D Anal Chem. 2023; 95(18):7087-7092.

PMID: 37093976 PMC: 10234431. DOI: 10.1021/acs.analchem.2c05635.


Towards an Ideal Hybridization-Based Strategy to Discover Protein Interactomes of Selected RNA Molecules.

Spiniello M, Scalf M, Casamassimi A, Abbondanza C, Smith L Int J Mol Sci. 2022; 23(2).

PMID: 35055128 PMC: 8779001. DOI: 10.3390/ijms23020942.

References
1.
Kong A, Leprevost F, Avtonomov D, Mellacheruvu D, Nesvizhskii A . MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017; 14(5):513-520. PMC: 5409104. DOI: 10.1038/nmeth.4256. View

2.
Mitchell S, Parker R . Principles and properties of eukaryotic mRNPs. Mol Cell. 2014; 54(4):547-58. DOI: 10.1016/j.molcel.2014.04.033. View

3.
Millikin R, Solntsev S, Shortreed M, Smith L . Ultrafast Peptide Label-Free Quantification with FlashLFQ. J Proteome Res. 2017; 17(1):386-391. PMC: 5814109. DOI: 10.1021/acs.jproteome.7b00608. View

4.
Zuker M . Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31(13):3406-15. PMC: 169194. DOI: 10.1093/nar/gkg595. View

5.
Corbett A . Post-transcriptional regulation of gene expression and human disease. Curr Opin Cell Biol. 2018; 52:96-104. PMC: 5988930. DOI: 10.1016/j.ceb.2018.02.011. View