» Articles » PMID: 34692898

Locating Single-Atom Optical Picocavities Using Wavelength-Multiplexed Raman Scattering

Overview
Journal ACS Photonics
Date 2021 Oct 25
PMID 34692898
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Transient atomic protrusions in plasmonic nanocavities confine optical fields to sub-1-nm picocavities, allowing the optical interrogation of single molecules at room temperature. While picocavity formation is linked to both the local chemical environment and optical irradiation, the role of light in localizing the picocavity formation is unclear. Here, we combine information from thousands of picocavity events and simultaneously compare the transient Raman scattering arising from two incident pump wavelengths. Full analysis of the data set suggests that light suppresses the local effective barrier height for adatom formation and that the initial barrier height is decreased by reduced atomic coordination numbers near facet edges. Modeling the system also resolves the frequency-dependent picocavity field enhancements supported by these atomic scale features.

Citing Articles

Electronically Perturbed Vibrational Excitations of the Luminescing Stable Blatter Radical.

Bar-David J, Daaoub A, Chen S, Sibug-Torres S, Rocchetti S, Kang G ACS Nano. 2025; 19(8):7650-7660.

PMID: 39981951 PMC: 11887450. DOI: 10.1021/acsnano.4c09661.


Nanocavities for Molecular Optomechanics: Their Fundamental Description and Applications.

Roelli P, Hu H, Verhagen E, Reich S, Galland C ACS Photonics. 2024; 11(11):4486-4501.

PMID: 39584033 PMC: 11583369. DOI: 10.1021/acsphotonics.4c01548.


Impact of Surface Enhanced Raman Spectroscopy in Catalysis.

Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg J, Besteiro L ACS Nano. 2024; 18(43):29337-29379.

PMID: 39401392 PMC: 11526435. DOI: 10.1021/acsnano.4c06192.


Directional picoantenna behavior of tunnel junctions formed by an atomic-scale surface defect.

Mateos D, Jover O, Varea M, Lauwaet K, Granados D, Miranda R Sci Adv. 2024; 10(39):eadn2295.

PMID: 39321296 PMC: 11423879. DOI: 10.1126/sciadv.adn2295.


Uncovering low-frequency vibrations in surface-enhanced Raman of organic molecules.

Boehmke Amoruso A, Boto R, Elliot E, de Nijs B, Esteban R, Foldes T Nat Commun. 2024; 15(1):6733.

PMID: 39112490 PMC: 11306350. DOI: 10.1038/s41467-024-50823-x.


References
1.
Ciraci C, Hill R, Mock J, Urzhumov Y, Fernandez-Dominguez A, Maier S . Probing the ultimate limits of plasmonic enhancement. Science. 2012; 337(6098):1072-4. PMC: 3649871. DOI: 10.1126/science.1224823. View

2.
Urbieta M, Barbry M, Zhang Y, Koval P, Sanchez-Portal D, Zabala N . Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. ACS Nano. 2018; 12(1):585-595. DOI: 10.1021/acsnano.7b07401. View

3.
Readman C, de Nijs B, Szabo I, Demetriadou A, Greenhalgh R, Durkan C . Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution. Nano Lett. 2019; 19(3):2051-2058. DOI: 10.1021/acs.nanolett.9b00199. View

4.
Huang J, Grys D, Griffiths J, de Nijs B, Kamp M, Lin Q . Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy. Sci Adv. 2021; 7(23). PMC: 8177700. DOI: 10.1126/sciadv.abg1790. View

5.
Kurochkin N, Eliseev S, Gritsienko A, Sychev V, Vutukhnovsky A . Silver nanoparticle on aluminum mirror: active spectroscopy and decay rate enhancement. Nanotechnology. 2020; 31(50):505206. DOI: 10.1088/1361-6528/abb629. View