» Articles » PMID: 35793541

Picocavities: a Primer

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2022 Jul 6
PMID 35793541
Authors
Affiliations
Soon will be listed here.
Abstract

Picocavities are sub-nanometer-scale optical cavities recently found to trap light, which are formed by single-atom defects on metallic facets. Here, we develop simple picocavity models and discuss what is known and unknown about this new domain of atom-scale optics, as well as the challenges for developing comprehensive theories. We provide simple analytic expressions for many of their key properties and discuss a range of applications from molecular electronics to photocatalysis where picocavities are important.

Citing Articles

Electronically Perturbed Vibrational Excitations of the Luminescing Stable Blatter Radical.

Bar-David J, Daaoub A, Chen S, Sibug-Torres S, Rocchetti S, Kang G ACS Nano. 2025; 19(8):7650-7660.

PMID: 39981951 PMC: 11887450. DOI: 10.1021/acsnano.4c09661.


Plasmonic Light Emission by Inelastic Charge Transport in Ultrathin Zinc Oxide/Metal Heterostructures.

Wiedenhaupt H, Schulz F, Parra Lopez L, Hammud A, Park Y, Shiotari A Nano Lett. 2025; 25(7):2870-2877.

PMID: 39902871 PMC: 11848997. DOI: 10.1021/acs.nanolett.4c06099.


Mapping and Optically Writing Nanogap Inhomogeneities in 1-D Extended Plasmonic Nanowire-on-Mirror Cavities.

Taneja C, Elliott E, Pavan Kumar G, Baumberg J, Chikkaraddy R ACS Photonics. 2024; 11(12):5205-5214.

PMID: 39712394 PMC: 11660218. DOI: 10.1021/acsphotonics.4c01443.


An overview on plasmon-enhanced photoluminescence via metallic nanoantennas.

Montano-Priede J, Zapata-Herrera M, Esteban R, Zabala N, Aizpurua J Nanophotonics. 2024; 13(26):4771-4794.

PMID: 39640204 PMC: 11614590. DOI: 10.1515/nanoph-2024-0463.


Hot carrier generation in a strongly coupled molecule-plasmonic nanoparticle system.

Kluczyk-Korch K, Antosiewicz T Nanophotonics. 2024; 12(9):1711-1722.

PMID: 39634110 PMC: 11501517. DOI: 10.1515/nanoph-2022-0700.


References
1.
Griffiths J, Foldes T, de Nijs B, Chikkaraddy R, Wright D, Deacon W . Resolving sub-angstrom ambient motion through reconstruction from vibrational spectra. Nat Commun. 2021; 12(1):6759. PMC: 8604935. DOI: 10.1038/s41467-021-26898-1. View

2.
Kos D, Assumpcao D, Guo C, Baumberg J . Quantum Tunneling Induced Optical Rectification and Plasmon-Enhanced Photocurrent in Nanocavity Molecular Junctions. ACS Nano. 2021; 15(9):14535-14543. DOI: 10.1021/acsnano.1c04100. View

3.
Urbieta M, Barbry M, Zhang Y, Koval P, Sanchez-Portal D, Zabala N . Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. ACS Nano. 2018; 12(1):585-595. DOI: 10.1021/acsnano.7b07401. View

4.
Yu R, Liz-Marzan L, de Abajo F . Universal analytical modeling of plasmonic nanoparticles. Chem Soc Rev. 2017; 46(22):6710-6724. DOI: 10.1039/c6cs00919k. View

5.
Xomalis A, Chikkaraddy R, Oksenberg E, Shlesinger I, Huang J, Garnett E . Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities. ACS Nano. 2020; 14(8):10562-10568. PMC: 7458481. DOI: 10.1021/acsnano.0c04600. View