» Articles » PMID: 34669232

CRISPR-BETS: a Base-editing Design Tool for Generating Stop Codons

Overview
Specialties Biology
Biotechnology
Date 2021 Oct 20
PMID 34669232
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Cytosine base editors (CBEs) can install a predefined stop codon at the target site, representing a more predictable and neater method for creating genetic knockouts without altering the genome size. Due to the enhanced predictability of the editing outcomes, it is also more efficient to obtain homozygous mutants in the first generation. With the recent advancement of CBEs on improved editing activity, purify and specificity in plants and animals, base editing has become a more appealing technology for generating knockouts. However, there is a lack of design tools that can aid the adoption of CBEs for achieving such a purpose, especially in plants. Here, we developed a user-friendly design tool named CRISPR-BETS (base editing to stop), which helps with guide RNA (gRNA) design for introducing stop codons in the protein-coding genes of interest. We demonstrated in rice and tomato that CRISPR-BETS is easy-to-use, and its generated gRNAs are highly specific and efficient for generating stop codons and obtaining homozygous knockout lines. While we tailored the tool for the plant research community, CRISPR-BETS can also serve non-plant species.

Citing Articles

BES-Designer: A Web Tool to Design Guide RNAs for Base Editing to Simplify Library.

Zhou Q, Gao Q, Gao Y, Zhang Y, Chen Y, Li M Interdiscip Sci. 2024; 17(1):134-139.

PMID: 39466357 DOI: 10.1007/s12539-024-00663-6.


Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system.

Wang L, Han H Heliyon. 2024; 10(19):e38588.

PMID: 39397905 PMC: 11471210. DOI: 10.1016/j.heliyon.2024.e38588.


PAM-relaxed and temperature-tolerant CRISPR-Mb3Cas12a single transcript unit systems for efficient singular and multiplexed genome editing in rice, maize, and tomato.

Liu S, He Y, Fan T, Zhu M, Qi C, Ma Y Plant Biotechnol J. 2024; 23(1):156-173.

PMID: 39387219 PMC: 11672738. DOI: 10.1111/pbi.14486.


Versatile plant genome engineering using anti-CRISPR-Cas12a systems.

He Y, Liu S, Chen L, Pu D, Zhong Z, Xu T Sci China Life Sci. 2024; 67(12):2730-2745.

PMID: 39158766 DOI: 10.1007/s11427-024-2704-7.


Integrating machine learning and genome editing for crop improvement.

Chen L, Liu G, Zhang T aBIOTECH. 2024; 5(2):262-277.

PMID: 38974863 PMC: 11224061. DOI: 10.1007/s42994-023-00133-5.


References
1.
Anzalone A, Koblan L, Liu D . Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020; 38(7):824-844. DOI: 10.1038/s41587-020-0561-9. View

2.
Gaudelli N, Komor A, Rees H, Packer M, Badran A, Bryson D . Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017; 551(7681):464-471. PMC: 5726555. DOI: 10.1038/nature24644. View

3.
Li G, Sretenovic S, Eisenstein E, Coleman G, Qi Y . Highly efficient C-to-T and A-to-G base editing in a Populus hybrid. Plant Biotechnol J. 2021; 19(6):1086-1088. PMC: 8196628. DOI: 10.1111/pbi.13581. View

4.
Tang X, Liu G, Zhou J, Ren Q, You Q, Tian L . A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 2018; 19(1):84. PMC: 6031188. DOI: 10.1186/s13059-018-1458-5. View

5.
Xing H, Dong L, Wang Z, Zhang H, Han C, Liu B . A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014; 14:327. PMC: 4262988. DOI: 10.1186/s12870-014-0327-y. View