» Articles » PMID: 34625561

An Updated Genome-scale Metabolic Network Reconstruction of Pseudomonas Aeruginosa PA14 to Characterize Mucin-driven Shifts in Bacterial Metabolism

Overview
Specialty Biology
Date 2021 Oct 9
PMID 34625561
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Mucins are present in mucosal membranes throughout the body and play a key role in the microbe clearance and infection prevention. Understanding the metabolic responses of pathogens to mucins will further enable the development of protective approaches against infections. We update the genome-scale metabolic network reconstruction (GENRE) of one such pathogen, Pseudomonas aeruginosa PA14, through metabolic coverage expansion, format update, extensive annotation addition, and literature-based curation to produce iPau21. We then validate iPau21 through MEMOTE, growth rate, carbon source utilization, and gene essentiality testing to demonstrate its improved quality and predictive capabilities. We then integrate the GENRE with transcriptomic data in order to generate context-specific models of P. aeruginosa metabolism. The contextualized models recapitulated known phenotypes of unaltered growth and a differential utilization of fumarate metabolism, while also revealing an increased utilization of propionate metabolism upon MUC5B exposure. This work serves to validate iPau21 and demonstrate its utility for providing biological insights.

Citing Articles

Model-driven characterization of functional diversity of clinical isolates with broadly representative phenotypes.

Islam M, Kolling G, Glass E, Goldberg J, Papin J Microb Genom. 2024; 10(6).

PMID: 38836744 PMC: 11261902. DOI: 10.1099/mgen.0.001259.


Spatial transcriptome-guided multi-scale framework connects P. aeruginosa metabolic states to oxidative stress biofilm microenvironment.

Kuper T, Islam M, Peirce-Cottler S, Papin J, Ford R PLoS Comput Biol. 2024; 20(4):e1012031.

PMID: 38669236 PMC: 11051585. DOI: 10.1371/journal.pcbi.1012031.


: merging, comparing, and translating genome-scale metabolic models using universal identifiers.

Hari A, Zarrabi A, Lobo D NAR Genom Bioinform. 2024; 6(1):lqae010.

PMID: 38312936 PMC: 10836943. DOI: 10.1093/nargab/lqae010.


Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12.

Han S, Kim D, Kim Y, Yoon S BMC Genomics. 2024; 25(1):63.

PMID: 38229031 PMC: 10790481. DOI: 10.1186/s12864-023-09940-y.


Mathematical models of cystic fibrosis as a systemic disease.

Olivenca D, Davis J, Kumbale C, Zhao C, Brown S, McCarty N WIREs Mech Dis. 2023; 15(6):e1625.

PMID: 37544654 PMC: 10843793. DOI: 10.1002/wsbm.1625.


References
1.
Romer M, Eichner J, Drager A, Wrzodek C, Wrzodek F, Zell A . ZBIT Bioinformatics Toolbox: A Web-Platform for Systems Biology and Expression Data Analysis. PLoS One. 2016; 11(2):e0149263. PMC: 4801062. DOI: 10.1371/journal.pone.0149263. View

2.
Liberati N, Urbach J, Miyata S, Lee D, Drenkard E, Wu G . An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A. 2006; 103(8):2833-8. PMC: 1413827. DOI: 10.1073/pnas.0511100103. View

3.
Kmietowicz Z . Few novel antibiotics in the pipeline, WHO warns. BMJ. 2017; 358:j4339. DOI: 10.1136/bmj.j4339. View

4.
Hosseini E, Grootaert C, Verstraete W, Van de Wiele T . Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev. 2011; 69(5):245-58. DOI: 10.1111/j.1753-4887.2011.00388.x. View

5.
Henke M, John G, Germann M, Lindemann H, Rubin B . MUC5AC and MUC5B mucins increase in cystic fibrosis airway secretions during pulmonary exacerbation. Am J Respir Crit Care Med. 2007; 175(8):816-21. DOI: 10.1164/rccm.200607-1011OC. View