» Articles » PMID: 34607961

Tubular Lysosomes Harbor Active Ion Gradients and Poise Macrophages for Phagocytosis

Overview
Specialty Science
Date 2021 Oct 5
PMID 34607961
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Lysosomes adopt dynamic, tubular states that regulate antigen presentation, phagosome resolution, and autophagy. Tubular lysosomes are studied either by inducing autophagy or by activating immune cells, both of which lead to cell states where lysosomal gene expression differs from the resting state. Therefore, it has been challenging to pinpoint the biochemical properties lysosomes acquire upon tubulation that could drive their functionality. Here we describe a DNA-based assembly that tubulates lysosomes in macrophages without activating them. Proteolytic activity maps at single-lysosome resolution revealed that tubular lysosomes were less degradative and showed proximal to distal luminal pH and Ca gradients. Such gradients had been predicted but never previously observed. We identify a role for tubular lysosomes in promoting phagocytosis and activating MMP9. The ability to tubulate lysosomes without starving or activating immune cells may help reveal new roles for tubular lysosomes.

Citing Articles

Targeted imaging of lysosomal zinc ions with a tetrahedral DNA framework fluorescent reporter.

Gao Y, Liu X, Li W, Chen Y, Zhu S, Yan Q Natl Sci Rev. 2024; 11(11):nwae307.

PMID: 39440260 PMC: 11493095. DOI: 10.1093/nsr/nwae307.


Mechanisms of lysosomal tubulation and sorting driven by LRRK2.

Bonet-Ponce L, Kluss J, Cookson M Biochem Soc Trans. 2024; 52(4):1909-1919.

PMID: 39083004 PMC: 11668303. DOI: 10.1042/BST20240087.


Pressure sensing of lysosomes enables control of TFEB responses in macrophages.

Cai R, Scott O, Ye G, Le T, Saran E, Kwon W Nat Cell Biol. 2024; 26(8):1247-1260.

PMID: 38997458 DOI: 10.1038/s41556-024-01459-y.


The ion channels of endomembranes.

Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H Physiol Rev. 2024; 104(3):1335-1385.

PMID: 38451235 PMC: 11381013. DOI: 10.1152/physrev.00025.2023.


A mechanism of lysosomal calcium entry.

Zajac M, Mukherjee S, Anees P, Oettinger D, Henn K, Srikumar J Sci Adv. 2024; 10(7):eadk2317.

PMID: 38354239 PMC: 10866540. DOI: 10.1126/sciadv.adk2317.


References
1.
Kong D, Yamori T . ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor identified using the JFCR39 drug discovery system. Acta Pharmacol Sin. 2010; 31(9):1189-97. PMC: 4002321. DOI: 10.1038/aps.2010.150. View

2.
Chan Y, Cardwell M, Hermanas T, Uchiyama T, Martinez J . Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell Microbiol. 2009; 11(4):629-44. PMC: 2773465. DOI: 10.1111/j.1462-5822.2008.01279.x. View

3.
Cabukusta B, Neefjes J . Mechanisms of lysosomal positioning and movement. Traffic. 2018; 19(10):761-769. PMC: 6175085. DOI: 10.1111/tra.12587. View

4.
Kaniuk N, Canadien V, Bagshaw R, Bakowski M, Braun V, Landekic M . Salmonella exploits Arl8B-directed kinesin activity to promote endosome tubulation and cell-to-cell transfer. Cell Microbiol. 2011; 13(11):1812-23. DOI: 10.1111/j.1462-5822.2011.01663.x. View

5.
Lacombe J, Karsenty G, Ferron M . Regulation of lysosome biogenesis and functions in osteoclasts. Cell Cycle. 2013; 12(17):2744-52. PMC: 3899188. DOI: 10.4161/cc.25825. View