» Articles » PMID: 34606340

A Mycobacterium Tuberculosis NBTI DNA Gyrase Inhibitor Is Active Against Mycobacterium Abscessus

Abstract

Fluoroquinolones-the only clinically used DNA gyrase inhibitors-are effective against tuberculosis (TB) but are in limited clinical use for nontuberculous mycobacteria (NTM) lung infections due to intrinsic drug resistance. We sought to test alternative DNA gyrase inhibitors for anti-NTM activity. Mycobacterium tuberculosis gyrase inhibitors (MGIs), a subclass of novel bacterial topoisomerase inhibitors (NBTIs), were recently shown to be active against the tubercle bacillus. Here, we show that the MGI EC/11716 not only has potent anti-tubercular activity but is active against M. abscessus and M. avium . Focusing on M. abscessus, which causes the most difficult to cure NTM disease, we show that EC/11716 is bactericidal, active against drug-tolerant biofilms, and efficacious in a murine model of M. abscessus lung infection. Based on resistant mutant selection experiments, we report a low frequency of resistance to EC/11716 and confirm DNA gyrase as its target. Our findings demonstrate the potential of NBTIs as anti-M. abscessus and possibly broad-spectrum anti-mycobacterial agents.

Citing Articles

Anti-Mycobacterial Activity of Bacterial Topoisomerase Inhibitors with Dioxygenated Linkers.

Mitton-Fry M, Cummings J, Lu Y, Armenia J, Byl J, Oviatt A ACS Infect Dis. 2025; 11(2):474-482.

PMID: 39792935 PMC: 11834967. DOI: 10.1021/acsinfecdis.4c00743.


Molecular mechanism of a triazole-containing inhibitor of DNA gyrase.

Gedeon A, Yab E, Dinut A, Sadowski E, Capton E, Dreneau A iScience. 2024; 27(10):110967.

PMID: 39429773 PMC: 11489056. DOI: 10.1016/j.isci.2024.110967.


Toward better cures for lung disease.

Dartois V, Dick T Clin Microbiol Rev. 2024; 37(4):e0008023.

PMID: 39360834 PMC: 11629636. DOI: 10.1128/cmr.00080-23.


Role of DNA Double-Strand Break Formation in Gyrase Inhibitor-Mediated Killing of Nonreplicating Persistent in Caseum.

Ashwath P, Osiecki P, Weiner D, Via L, Sarathy J ACS Infect Dis. 2024; 10(10):3631-3639.

PMID: 39315541 PMC: 11474946. DOI: 10.1021/acsinfecdis.4c00499.


Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations.

Dartois V, Bonfield T, Boyce J, Daley C, Dick T, Gonzalez-Juarrero M Tuberculosis (Edinb). 2024; 147:102503.

PMID: 38729070 PMC: 11168888. DOI: 10.1016/j.tube.2024.102503.


References
1.
Wiener J, Gomez L, Venkatesan H, Santillan Jr A, Allison B, Schwarz K . Tetrahydroindazole inhibitors of bacterial type II topoisomerases. Part 2: SAR development and potency against multidrug-resistant strains. Bioorg Med Chem Lett. 2007; 17(10):2718-22. DOI: 10.1016/j.bmcl.2007.03.004. View

2.
Negatu D, Beuchel A, Madani A, Alvarez N, Chen C, Aragaw W . Piperidine-4-Carboxamides Target DNA Gyrase in Mycobacterium abscessus. Antimicrob Agents Chemother. 2021; 65(8):e0067621. PMC: 8284461. DOI: 10.1128/AAC.00676-21. View

3.
Chew K, Octavia S, Go J, Ng S, Tang Y, Soh P . In vitro susceptibility of Mycobacterium abscessus complex and feasibility of standardizing treatment regimens. J Antimicrob Chemother. 2020; 76(4):973-978. DOI: 10.1093/jac/dkaa520. View

4.
Negatu D, Yamada Y, Xi Y, Go M, Zimmerman M, Ganapathy U . Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in . mBio. 2019; 10(2). PMC: 6437058. DOI: 10.1128/mBio.02781-18. View

5.
Griffith D . Treatment of Mycobacterium avium Complex (MAC). Semin Respir Crit Care Med. 2018; 39(3):351-361. DOI: 10.1055/s-0038-1660472. View