6.
Li L, Okumu A, Nolan S, English A, Vibhute S, Lu Y
. 1,3-Dioxane-Linked Bacterial Topoisomerase Inhibitors with Enhanced Antibacterial Activity and Reduced hERG Inhibition. ACS Infect Dis. 2019; 5(7):1115-1128.
DOI: 10.1021/acsinfecdis.8b00375.
View
7.
Aldred K, Blower T, Kerns R, Berger J, Osheroff N
. Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase. Proc Natl Acad Sci U S A. 2016; 113(7):E839-46.
PMC: 4763725.
DOI: 10.1073/pnas.1525055113.
View
8.
Brown-Elliott B, Bush G, Hughes M, Rodriguez E, Weikel C, Min S
. activity of gepotidacin and comparator antimicrobials against isolates of nontuberculous mycobacteria (NTM). Antimicrob Agents Chemother. 2024; 68(6):e0168423.
PMC: 11620510.
DOI: 10.1128/aac.01684-23.
View
9.
Wagenlehner F, Perry C, Hooton T, Scangarella-Oman N, Millns H, Powell M
. Oral gepotidacin versus nitrofurantoin in patients with uncomplicated urinary tract infection (EAGLE-2 and EAGLE-3): two randomised, controlled, double-blind, double-dummy, phase 3, non-inferiority trials. Lancet. 2024; 403(10428):741-755.
DOI: 10.1016/S0140-6736(23)02196-7.
View
10.
Bloemberg G, Keller P, Stucki D, Stuckia D, Trauner A, Borrell S
. Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis. N Engl J Med. 2015; 373(20):1986-8.
PMC: 4681277.
DOI: 10.1056/NEJMc1505196.
View
11.
Pranger A, van der Werf T, Kosterink J, Alffenaar J
. The Role of Fluoroquinolones in the Treatment of Tuberculosis in 2019. Drugs. 2019; 79(2):161-171.
PMC: 6373389.
DOI: 10.1007/s40265-018-1043-y.
View
12.
Negatu D, Beuchel A, Madani A, Alvarez N, Chen C, Aragaw W
. Piperidine-4-Carboxamides Target DNA Gyrase in Mycobacterium abscessus. Antimicrob Agents Chemother. 2021; 65(8):e0067621.
PMC: 8284461.
DOI: 10.1128/AAC.00676-21.
View
13.
Mirzayev F, Viney K, Linh N, Gonzalez-Angulo L, Gegia M, Jaramillo E
. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur Respir J. 2020; 57(6).
PMC: 8176349.
DOI: 10.1183/13993003.03300-2020.
View
14.
Conradie F, Diacon A, Ngubane N, Howell P, Everitt D, Crook A
. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med. 2020; 382(10):893-902.
PMC: 6955640.
DOI: 10.1056/NEJMoa1901814.
View
15.
Kolaric A, Anderluh M, Minovski N
. Two Decades of Successful SAR-Grounded Stories of the Novel Bacterial Topoisomerase Inhibitors (NBTIs). J Med Chem. 2020; 63(11):5664-5674.
PMC: 7307926.
DOI: 10.1021/acs.jmedchem.9b01738.
View
16.
Gibson E, Blower T, Cacho M, Bax B, Berger J, Osheroff N
. Mechanism of Action of Mycobacterium tuberculosis Gyrase Inhibitors: A Novel Class of Gyrase Poisons. ACS Infect Dis. 2018; 4(8):1211-1222.
PMC: 6309371.
DOI: 10.1021/acsinfecdis.8b00035.
View
17.
Lu Y, Mann C, Nolan S, Collins J, Parker E, Papa J
. 1,3-Dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Expanding Structural Diversity and the Antibacterial Spectrum. ACS Med Chem Lett. 2022; 13(6):955-963.
PMC: 9189870.
DOI: 10.1021/acsmedchemlett.2c00111.
View
18.
Peyrusson F, Tulkens P, Van Bambeke F
. Cellular Pharmacokinetics and Intracellular Activity of Gepotidacin against Staphylococcus aureus Isolates with Different Resistance Phenotypes in Models of Cultured Phagocytic Cells. Antimicrob Agents Chemother. 2018; 62(4).
PMC: 5913948.
DOI: 10.1128/AAC.02245-17.
View
19.
Beuchel A, Robaa D, Negatu D, Madani A, Alvarez N, Zimmerman M
. Structure-Activity Relationship of Anti- Piperidine-4-carboxamides, a New Class of NBTI DNA Gyrase Inhibitors. ACS Med Chem Lett. 2022; 13(3):417-427.
PMC: 8919391.
DOI: 10.1021/acsmedchemlett.1c00549.
View
20.
Scangarella-Oman N, Hossain M, Perry C, Tiffany C, Powell M, Swift B
. Dose selection for a phase III study evaluating gepotidacin (GSK2140944) in the treatment of uncomplicated urogenital gonorrhoea. Sex Transm Infect. 2022; 99(1):64-69.
PMC: 9887395.
DOI: 10.1136/sextrans-2022-055518.
View