Pagnuco I, Eyre S, Rattray M, Morris A
Genet Epidemiol. 2025; 49(1):e22611.
PMID: 39812501
PMC: 11734644.
DOI: 10.1002/gepi.22611.
Jeltsch P, Monnin K, Jreige M, Fernandes-Mendes L, Girardet R, Dromain C
Diagnostics (Basel). 2025; 14(24.
PMID: 39767146
PMC: 11726866.
DOI: 10.3390/diagnostics14242785.
Rosenblatt M, Tejavibulya L, Sun H, Camp C, Khaitova M, Adkinson B
Nat Hum Behav. 2024; 8(10):2018-2033.
PMID: 39085406
DOI: 10.1038/s41562-024-01931-7.
Faust L, Wilson P, Asai S, Fu S, Liu H, Ruan X
JMIR Med Inform. 2024; 12:e50437.
PMID: 38941140
PMC: 11245651.
DOI: 10.2196/50437.
Brosula R, Corbin C, Chen J
AMIA Jt Summits Transl Sci Proc. 2024; 2024:95-104.
PMID: 38827052
PMC: 11141811.
Identifying bias in models that detect vocal fold paralysis from audio recordings using explainable machine learning and clinician ratings.
Low D, Rao V, Randolph G, Song P, Ghosh S
PLOS Digit Health. 2024; 3(5):e0000516.
PMID: 38814939
PMC: 11139298.
DOI: 10.1371/journal.pdig.0000516.
Facilitating clinically relevant skin tumor diagnostics with spectroscopy-driven machine learning.
Andersson E, Hult J, Troein C, Stridh M, Sjogren B, Pekar-Lukacs A
iScience. 2024; 27(5):109653.
PMID: 38680659
PMC: 11053315.
DOI: 10.1016/j.isci.2024.109653.
Deep social neuroscience: the promise and peril of using artificial neural networks to study the social brain.
Sievers B, Thornton M
Soc Cogn Affect Neurosci. 2024; 19(1).
PMID: 38334747
PMC: 10880882.
DOI: 10.1093/scan/nsae014.
Brain-phenotype predictions can survive across diverse real-world data.
Adkinson B, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S
bioRxiv. 2024; .
PMID: 38328100
PMC: 10849571.
DOI: 10.1101/2024.01.23.576916.
The effects of data leakage on connectome-based machine learning models.
Rosenblatt M, Tejavibulya L, Jiang R, Noble S, Scheinost D
bioRxiv. 2024; .
PMID: 38234740
PMC: 10793416.
DOI: 10.1101/2023.06.09.544383.
A multi-sample evaluation of the measurement structure and function of the modified monetary incentive delay task in adolescents.
Demidenko M, Mumford J, Ram N, Poldrack R
Dev Cogn Neurosci. 2023; 65:101337.
PMID: 38160517
PMC: 10801229.
DOI: 10.1016/j.dcn.2023.101337.
Power and reproducibility in the external validation of brain-phenotype predictions.
Rosenblatt M, Tejavibulya L, Camp C, Jiang R, Westwater M, Noble S
bioRxiv. 2023; .
PMID: 37961654
PMC: 10634903.
DOI: 10.1101/2023.10.25.563971.
Identification of antigen-presentation related B cells as a key player in Crohn's disease using single-cell dissecting, hdWGCNA, and deep learning.
Shen X, Mo S, Zeng X, Wang Y, Lin L, Weng M
Clin Exp Med. 2023; 23(8):5255-5267.
PMID: 37550553
DOI: 10.1007/s10238-023-01145-7.
Guiding principles for the responsible development of artificial intelligence tools for healthcare.
Badal K, Lee C, Esserman L
Commun Med (Lond). 2023; 3(1):47.
PMID: 37005467
PMC: 10066953.
DOI: 10.1038/s43856-023-00279-9.
Validation of risk prediction models applied to longitudinal electronic health record data for the prediction of major cardiovascular events in the presence of data shifts.
Li Y, Salimi-Khorshidi G, Rao S, Canoy D, Hassaine A, Lukasiewicz T
Eur Heart J Digit Health. 2023; 3(4):535-547.
PMID: 36710898
PMC: 9779795.
DOI: 10.1093/ehjdh/ztac061.
Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses.
Bayer J, Thompson P, Ching C, Liu M, Chen A, Panzenhagen A
Front Neurol. 2022; 13:923988.
PMID: 36388214
PMC: 9661923.
DOI: 10.3389/fneur.2022.923988.
Improving predictive performance in incident heart failure using machine learning and multi-center data.
Sabovcik F, Ntalianis E, Cauwenberghs N, Kuznetsova T
Front Cardiovasc Med. 2022; 9:1011071.
PMID: 36330000
PMC: 9623026.
DOI: 10.3389/fcvm.2022.1011071.
Integrated bioinformatical analysis, machine learning and experiment-identified m6A subtype, and predictive drug target signatures for diagnosing renal fibrosis.
Feng C, Wang Z, Liu C, Liu S, Wang Y, Zeng Y
Front Pharmacol. 2022; 13:909784.
PMID: 36120336
PMC: 9470879.
DOI: 10.3389/fphar.2022.909784.
Statistical quantification of confounding bias in machine learning models.
Spisak T
Gigascience. 2022; 11.
PMID: 36017878
PMC: 9412867.
DOI: 10.1093/gigascience/giac082.
Systematic evaluation of machine learning algorithms for neuroanatomically-based age prediction in youth.
Modabbernia A, Whalley H, Glahn D, Thompson P, Kahn R, Frangou S
Hum Brain Mapp. 2022; 43(17):5126-5140.
PMID: 35852028
PMC: 9812239.
DOI: 10.1002/hbm.26010.