» Articles » PMID: 34529946

How Tim Proteins Differentially Exploit Membrane Features to Attain Robust Target Sensitivity

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2021 Sep 16
PMID 34529946
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Immune surveillance cells such as T cells and phagocytes utilize integral plasma membrane receptors to recognize surface signatures on triggered and activated cells such as those in apoptosis. One such family of plasma membrane sensors, the transmembrane immunoglobulin and mucin domain (Tim) proteins, specifically recognize phosphatidylserine (PS) but elicit distinct immunological responses. The molecular basis for the recognition of lipid signals on target cell surfaces is not well understood. Previous results suggest that basic side chains present at the membrane interface on the Tim proteins might facilitate association with additional anionic lipids including but not necessarily limited to PS. We, therefore, performed a comparative quantitative analysis of the binding of the murine Tim1, Tim3, and Tim4, to synthetic anionic phospholipid membranes under physiologically relevant conditions. X-ray reflectivity and vesicle binding studies were used to compare the water-soluble domain of Tim3 with results previously obtained for Tim1 and Tim4. Although a calcium link was essential for all three proteins, the three homologs differed in how they balance the hydrophobic and electrostatic interactions driving membrane association. The proteins also varied in their sensing of phospholipid chain unsaturation and showed different degrees of cooperativity in their dependence on bilayer PS concentration. Surprisingly, trace amounts of anionic phosphatidic acid greatly strengthened the bilayer association of Tim3 and Tim4, but not Tim1. A novel mathematical model provided values for the binding parameters and illuminated the complex interplay among ligands. In conclusion, our results provide a quantitative description of the contrasting selectivity used by three Tim proteins in the recognition of phospholipids presented on target cell surfaces. This paradigm is generally applicable to the analysis of the binding of peripheral proteins to target membranes through the heterotropic cooperative interactions of multiple ligands.

Citing Articles

Chikungunya virus release is reduced by TIM-1 receptors through binding of envelope phosphatidylserine.

Reyes Ballista J, Hoover A, Noble J, Acciani M, Miazgowicz K, Harrison S J Virol. 2024; 98(8):e0077524.

PMID: 39007616 PMC: 11334481. DOI: 10.1128/jvi.00775-24.


Parkinson's disease-associated mutations in α-synuclein alters its lipid-bound state.

Maltseva S, Kerr D, Turke M, Adams E, Lee K Biophys J. 2024; 123(12):1610-1619.

PMID: 38702883 PMC: 11213968. DOI: 10.1016/j.bpj.2024.05.002.


Binding equations for the lipid composition dependence of peripheral membrane-binding proteins.

Kerr D, Suwatthee T, Maltseva S, Lee K Biophys J. 2024; 123(7):885-900.

PMID: 38433448 PMC: 10995427. DOI: 10.1016/j.bpj.2024.02.031.


Chikungunya Virus Release is Reduced by TIM-1 Receptors Through Binding of Envelope Phosphatidylserine.

Reyes Ballista J, Hoover A, Noble J, Acciani M, Miazgowicz K, Harrison S bioRxiv. 2024; .

PMID: 38328121 PMC: 10849729. DOI: 10.1101/2024.01.25.577233.


Extrusion: A New Method for Rapid Formulation of High-Yield, Monodisperse Nanobubbles.

Counil C, Abenojar E, Perera R, Exner A Small. 2022; 18(24):e2200810.

PMID: 35587613 PMC: 9233137. DOI: 10.1002/smll.202200810.

References
1.
Wilker P, Sedy J, Grigura V, Murphy T, Murphy K . Evidence for carbohydrate recognition and homotypic and heterotypic binding by the TIM family. Int Immunol. 2007; 19(6):763-73. DOI: 10.1093/intimm/dxm044. View

2.
Vanni S, Vamparys L, Gautier R, Drin G, Etchebest C, Fuchs P . Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. Biophys J. 2013; 104(3):575-84. PMC: 3566459. DOI: 10.1016/j.bpj.2012.11.3837. View

3.
Mukhopadhyay P, Monticelli L, Tieleman D . Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Biophys J. 2004; 86(3):1601-9. PMC: 1303994. DOI: 10.1016/S0006-3495(04)74227-7. View

4.
de Sousa Linhares A, Kellner F, Jutz S, Zlabinger G, Gabius H, Huppa J . TIM-3 and CEACAM1 do not interact in cis and in trans. Eur J Immunol. 2020; 50(8):1126-1141. PMC: 7496933. DOI: 10.1002/eji.201948400. View

5.
Resch K . Polyunsaturated fatty acids are enriched in the plasma membranes of mitogen-stimulated T-lymphocytes. Biochim Biophys Acta. 1987; 904(1):22-8. DOI: 10.1016/0005-2736(87)90082-4. View