» Articles » PMID: 3450286

Reiterated DNA Sequences in Rhizobium and Agrobacterium Spp

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1987 Dec 1
PMID 3450286
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Repeated DNA sequences are a general characteristic of eucaryotic genomes. Although several examples of DNA reiteration have been found in procaryotic organisms, only in the case of the archaebacteria Halobacterium halobium and Halobacterium volcanii [C. Sapienza and W. F. Doolittle, Nature (London) 295:384-389, 1982], has DNA reiteration been reported as a common genomic feature. The genomes of two Rhizobium phaseoli strains, one Rhizobium meliloti strain, and one Agrobacterium tumefaciens strain were analyzed for the presence of repetitive DNA. Rhizobium and Agrobacterium spp. are closely related soil bacteria that interact with plants and that belong to the taxonomical family Rhizobiaceae. Rhizobium species establish a nitrogen-fixing symbiosis in the roots of legumes, whereas Agrobacterium species is a pathogen in different plants. The four strains revealed a large number of repeated DNA sequences. The family size was usually small, from 2 to 5 elements, but some presented more than 10 elements. Rhizobium and Agrobacterium spp. contain large plasmids in addition to the chromosomes. Analysis of the two Rhizobium strains indicated that DNA reiteration is not confined to the chromosome or to some plasmids but is a property of the whole genome.

Citing Articles

The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42.

Gonzalez-Sanchez A, Cubillas C, Miranda F, Davalos A, Garcia-de Los Santos A Microbiologyopen. 2017; 7(3):e00573.

PMID: 29280343 PMC: 6011978. DOI: 10.1002/mbo3.573.


Genetic characterization of atypical Citrobacter freundii.

Delgado G, Souza V, Morales R, Cerritos R, Gonzalez-Gonzalez A, Mendez J PLoS One. 2013; 8(9):e74120.

PMID: 24069274 PMC: 3771896. DOI: 10.1371/journal.pone.0074120.


Housekeeping genes essential for pantothenate biosynthesis are plasmid-encoded in Rhizobium etli and Rhizobium leguminosarum.

Villasenor T, Brom S, Davalos A, Lozano L, Romero D, Garcia-de Los Santos A BMC Microbiol. 2011; 11:66.

PMID: 21463532 PMC: 3082293. DOI: 10.1186/1471-2180-11-66.


Plasmids with a chromosome-like role in rhizobia.

Landeta C, Davalos A, Cevallos M, Geiger O, Brom S, Romero D J Bacteriol. 2011; 193(6):1317-26.

PMID: 21217003 PMC: 3067620. DOI: 10.1128/JB.01184-10.


Genomes of the symbiotic nitrogen-fixing bacteria of legumes.

MacLean A, Finan T, Sadowsky M Plant Physiol. 2007; 144(2):615-22.

PMID: 17556525 PMC: 1914180. DOI: 10.1104/pp.107.101634.


References
1.
Eckhardt T . A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978; 1(4):584-8. DOI: 10.1016/0147-619x(78)90016-1. View

2.
Gottfert M, Horvath B, Kondorosi E, Putnoky P, Rodriguez-Quinones F, Kondorosi A . At least two nodD genes are necessary for efficient nodulation of alfalfa by Rhizobium meliloti. J Mol Biol. 1986; 191(3):411-20. DOI: 10.1016/0022-2836(86)90136-1. View

3.
Rosenberg C, Boistard P, Denarie J . Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genet. 1981; 184(2):326-33. DOI: 10.1007/BF00272926. View

4.
Covarrubias L, Bolivar F . Construction and characterization of new cloning vehicles. VI. Plasmid pBR329, a new derivative of pBR328 lacking the 482-base-pair inverted duplication. Gene. 1982; 17(1):79-89. DOI: 10.1016/0378-1119(82)90103-2. View

5.
Better M, Lewis B, Corbin D, Ditta G, Helinski D . Structural relationships among Rhizobium meliloti symbiotic promoters. Cell. 1983; 35(2 Pt 1):479-85. DOI: 10.1016/0092-8674(83)90181-2. View