» Articles » PMID: 34475388

Cell Reprogramming Shapes the Mitochondrial DNA Landscape

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Sep 3
PMID 34475388
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Individual induced pluripotent stem cells (iPSCs) show considerable phenotypic heterogeneity, but the reasons for this are not fully understood. Comprehensively analysing the mitochondrial genome (mtDNA) in 146 iPSC and fibroblast lines from 151 donors, we show that most age-related fibroblast mtDNA mutations are lost during reprogramming. However, iPSC-specific mutations are seen in 76.6% (108/141) of iPSC lines at a mutation rate of 8.62 × 10/base pair. The mutations observed in iPSC lines affect a higher proportion of mtDNA molecules, favouring non-synonymous protein-coding and tRNA variants, including known disease-causing mutations. Analysing 11,538 single cells shows stable heteroplasmy in sub-clones derived from the original donor during differentiation, with mtDNA variants influencing the expression of key genes involved in mitochondrial metabolism and epidermal cell differentiation. Thus, the dynamic mtDNA landscape contributes to the heterogeneity of human iPSCs and should be considered when using reprogrammed cells experimentally or as a therapy.

Citing Articles

Origin and cell type specificity of mitochondrial DNA mutations in ALS-FTLD human brain organoids.

Nie Y, Szebenyi K, Wenger L, Lakatos A, Chinnery P Sci Adv. 2025; 11(10):eadr0690.

PMID: 40053600 PMC: 11887808. DOI: 10.1126/sciadv.adr0690.


Mitochondrial diseases: from molecular mechanisms to therapeutic advances.

Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X Signal Transduct Target Ther. 2025; 10(1):9.

PMID: 39788934 PMC: 11724432. DOI: 10.1038/s41392-024-02044-3.


Increased mitochondrial mutation heteroplasmy induces aging phenotypes in pluripotent stem cells and their differentiated progeny.

Vandiver A, Torres Jr A, Sanden A, Nguyen T, Gasilla J, Doan M Aging Cell. 2024; 24(3):e14402.

PMID: 39680477 PMC: 11896400. DOI: 10.1111/acel.14402.


Variant load of mitochondrial DNA in single human mesenchymal stem cells.

Hipps D, Pyle A, Porter A, Dobson P, Tuppen H, Lawless C Sci Rep. 2024; 14(1):20989.

PMID: 39251776 PMC: 11385243. DOI: 10.1038/s41598-024-71822-4.


Nanobiopsy investigation of the subcellular mtDNA heteroplasmy in human tissues.

Bury A, Pyle A, Vincent A, Actis P, Hudson G Sci Rep. 2024; 14(1):13789.

PMID: 38877095 PMC: 11178779. DOI: 10.1038/s41598-024-64455-0.


References
1.
Clima R, Preste R, Calabrese C, Diroma M, Santorsola M, Scioscia G . HmtDB 2016: data update, a better performing query system and human mitochondrial DNA haplogroup predictor. Nucleic Acids Res. 2016; 45(D1):D698-D706. PMC: 5210550. DOI: 10.1093/nar/gkw1066. View

2.
Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S . Common genetic variation drives molecular heterogeneity in human iPSCs. Nature. 2017; 546(7658):370-375. PMC: 5524171. DOI: 10.1038/nature22403. View

3.
Chen E, Tan C, Kou Y, Duan Q, Wang Z, Meirelles G . Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 14:128. PMC: 3637064. DOI: 10.1186/1471-2105-14-128. View

4.
Kang E, Wang X, Tippner-Hedges R, Ma H, Folmes C, Marti Gutierrez N . Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs. Cell Stem Cell. 2016; 18(5):625-36. DOI: 10.1016/j.stem.2016.02.005. View

5.
Floros V, Pyle A, Dietmann S, Wei W, Tang W, Irie N . Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat Cell Biol. 2018; 20(2):144-151. PMC: 6551220. DOI: 10.1038/s41556-017-0017-8. View