» Articles » PMID: 34450196

Microvesicles Transfer Mitochondria and Increase Mitochondrial Function in Brain Endothelial Cells

Abstract

We have demonstrated, for the first time that microvesicles, a sub-type of extracellular vesicles (EVs) derived from hCMEC/D3: a human brain endothelial cell (BEC) line transfer polarized mitochondria to recipient BECs in culture and to neurons in mice acute brain cortical and hippocampal slices. This mitochondrial transfer increased ATP levels by 100 to 200-fold (relative to untreated cells) in the recipient BECs exposed to oxygen-glucose deprivation, an in vitro model of cerebral ischemia. We have also demonstrated that transfer of microvesicles, the larger EV fraction, but not exosomes resulted in increased mitochondrial function in hypoxic endothelial cultures. Gene ontology and pathway enrichment analysis of EVs revealed a very high association to glycolysis-related processes. In comparison to heterotypic macrophage-derived EVs, BEC-derived EVs demonstrated a greater selectivity to transfer mitochondria and increase endothelial cell survival under ischemic conditions.

Citing Articles

Macrophage-derived mitochondria-rich extracellular vesicles aggravate bone loss in periodontitis by disrupting the mitochondrial dynamics of BMSCs.

Yan J, Yang T, Ma S, Li D, Hu C, Tan J J Nanobiotechnology. 2025; 23(1):208.

PMID: 40075447 PMC: 11905510. DOI: 10.1186/s12951-025-03178-4.


Roles and Potential Mechanisms of Endothelial Cell-Derived Extracellular Vesicles in Ischemic Stroke.

Yu X, Huang Y, Li C Transl Stroke Res. 2025; .

PMID: 39918683 DOI: 10.1007/s12975-025-01334-4.


The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Qin X, Li S, Huang X Medicine (Baltimore). 2025; 104(4):e41396.

PMID: 39854740 PMC: 11771608. DOI: 10.1097/MD.0000000000041396.


Astrocytic mitochondrial transfer to brain endothelial cells and pericytes increases with aging.

Velmurugan G, Vekaria H, Patel S, Sullivan P, Hubbard W J Cereb Blood Flow Metab. 2024; :271678X241306054.

PMID: 39668588 PMC: 11638933. DOI: 10.1177/0271678X241306054.


Harnessing extracellular vesicle-mediated crosstalk between T cells and cancer cells for therapeutic applications.

Budayr O, Miller B, Nguyen J J Control Release. 2024; 378:266-280.

PMID: 39657892 PMC: 11830559. DOI: 10.1016/j.jconrel.2024.12.011.


References
1.
Costa Verdera H, Gitz-Francois J, Schiffelers R, Vader P . Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release. 2017; 266:100-108. DOI: 10.1016/j.jconrel.2017.09.019. View

2.
Gyorgy B, Szabo T, Pasztoi M, Pal Z, Misjak P, Aradi B . Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011; 68(16):2667-88. PMC: 3142546. DOI: 10.1007/s00018-011-0689-3. View

3.
El Andaloussi S, Mager I, Breakefield X, Wood M . Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013; 12(5):347-57. DOI: 10.1038/nrd3978. View

4.
Bruno S, Tapparo M, Collino F, Chiabotto G, Deregibus M, Lindoso R . Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Eng Part A. 2017; 23(21-22):1262-1273. PMC: 5689130. DOI: 10.1089/ten.TEA.2017.0069. View

5.
Lo E, Moskowitz M, Jacobs T . Exciting, radical, suicidal: how brain cells die after stroke. Stroke. 2005; 36(2):189-92. DOI: 10.1161/01.STR.0000153069.96296.fd. View