» Articles » PMID: 34376683

A MicroRNA Program Regulates the Balance Between Cardiomyocyte Hyperplasia and Hypertrophy and Stimulates Cardiac Regeneration

Abstract

Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. Here we report that the miR-106b~25 cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. In line, gene delivery of miR-106b~25 to the mouse heart provokes cardiomyocyte proliferation by targeting a network of negative cell cycle regulators including E2f5, Cdkn1c, Ccne1 and Wee1. Conversely, gene-targeted miR-106b~25 null mice display spontaneous hypertrophic remodeling and exaggerated remodeling to overload by derepression of the prohypertrophic transcription factors Hand2 and Mef2d. Taking advantage of the regulatory function of miR-106b~25 on cardiomyocyte hyperplasia and hypertrophy, viral gene delivery of miR-106b~25 provokes nearly complete regeneration of the adult myocardium after ischemic injury. Our data demonstrate that exploitation of conserved molecular programs can enhance the regenerative capacity of the injured heart.

Citing Articles

The highly conserved PIWI-interacting RNA CRAPIR antagonizes PA2G4-mediated NF110-NF45 disassembly to promote heart regeneration in mice.

Ma W, Chen H, Tian Y, Huang W, Ren Z, Li J Nat Cardiovasc Res. 2025; 4(1):102-118.

PMID: 39814981 DOI: 10.1038/s44161-024-00592-z.


Transforming Cardiotoxicity Detection in Cancer Therapies: The Promise of MicroRNAs as Precision Biomarkers.

Moscoso I, Rodriguez-Manero M, Cebro-Marquez M, Vilar-Sanchez M, Serrano-Cruz V, Vidal-Abeijon I Int J Mol Sci. 2024; 25(22).

PMID: 39595980 PMC: 11593668. DOI: 10.3390/ijms252211910.


Posttranscriptional Regulation by Proteins and Noncoding RNAs.

Aranega A, Franco D Adv Exp Med Biol. 2024; 1441:313-339.

PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17.


Targeting cardiomyocyte cell cycle regulation in heart failure.

Zhu C, Yuan T, Krishnan J Basic Res Cardiol. 2024; 119(3):349-369.

PMID: 38683371 PMC: 11142990. DOI: 10.1007/s00395-024-01049-x.


Non-Coding RNA-Targeted Therapy: A State-of-the-Art Review.

Nappi F Int J Mol Sci. 2024; 25(7).

PMID: 38612441 PMC: 11011542. DOI: 10.3390/ijms25073630.


References
1.
Senyo S, Steinhauser M, Pizzimenti C, Yang V, Cai L, Wang M . Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2012; 493(7432):433-6. PMC: 3548046. DOI: 10.1038/nature11682. View

2.
Xin M, Kim Y, Sutherland L, Qi X, McAnally J, Schwartz R . Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011; 4(196):ra70. PMC: 3440872. DOI: 10.1126/scisignal.2002278. View

3.
Olson E, Schneider M . Sizing up the heart: development redux in disease. Genes Dev. 2003; 17(16):1937-56. DOI: 10.1101/gad.1110103. View

4.
Thum T, Chau N, Bhat B, Gupta S, Linsley P, Bauersachs J . Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. J Clin Invest. 2011; 121(2):461-2. PMC: 3026747. DOI: 10.1172/JCI45938. View

5.
Mahmoud A, Kocabas F, Muralidhar S, Kimura W, Koura A, Thet S . Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013; 497(7448):249-253. PMC: 4159712. DOI: 10.1038/nature12054. View