Qin R, Ma J, He F, Qin W
Cell Discov. 2025; 11(1):21.
PMID: 40064869
PMC: 11894098.
DOI: 10.1038/s41421-024-00764-y.
Li J, Raina M, Wang Y, Xu C, Su L, Guo Q
bioRxiv. 2025; .
PMID: 39974940
PMC: 11838397.
DOI: 10.1101/2025.02.02.636138.
Zhang M, Parker J, An L, Liu Y, Sun X
BMC Bioinformatics. 2025; 26(1):35.
PMID: 39891065
PMC: 11786350.
DOI: 10.1186/s12859-025-06054-y.
Zhou L, Peng X, Chen M, He X, Tian G, Yang J
Gigascience. 2025; 14.
PMID: 39804726
PMC: 11727722.
DOI: 10.1093/gigascience/giae103.
Luo J, Fu J, Lu Z, Tu J
Brief Bioinform. 2025; 26(1.
PMID: 39800876
PMC: 11725393.
DOI: 10.1093/bib/bbae719.
Machine learning approaches for spatial omics data analysis in digital pathology: tools and applications in genitourinary oncology.
Kim H, Kim J, Yeon S, You S
Front Oncol. 2024; 14:1465098.
PMID: 39678498
PMC: 11638011.
DOI: 10.3389/fonc.2024.1465098.
Considerations for building and using integrated single-cell atlases.
Hrovatin K, Sikkema L, Shitov V, Heimberg G, Shulman M, Oliver A
Nat Methods. 2024; 22(1):41-57.
PMID: 39672979
DOI: 10.1038/s41592-024-02532-y.
Characterizing Fibroblast Heterogeneity in Diabetic Wounds Through Single-Cell RNA-Sequencing.
Wang H, Korah M, Jing S, Berry C, Griffin M, Longaker M
Biomedicines. 2024; 12(11).
PMID: 39595104
PMC: 11592066.
DOI: 10.3390/biomedicines12112538.
Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology.
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W
MedComm (2020). 2024; 5(10):e765.
PMID: 39376738
PMC: 11456678.
DOI: 10.1002/mco2.765.
STAREG: Statistical replicability analysis of high throughput experiments with applications to spatial transcriptomic studies.
Li Y, Zhou X, Chen R, Zhang X, Cao H
PLoS Genet. 2024; 20(10):e1011423.
PMID: 39361716
PMC: 11478871.
DOI: 10.1371/journal.pgen.1011423.
Unsupervised pattern identification in spatial gene expression atlas reveals mouse brain regions beyond established ontology.
Cahill R, Wang Y, Xian R, Lee A, Zeng H, Yu B
Proc Natl Acad Sci U S A. 2024; 121(37):e2319804121.
PMID: 39226356
PMC: 11406299.
DOI: 10.1073/pnas.2319804121.
A contrastive learning approach to integrate spatial transcriptomics and histological images.
Lin Y, Liang Y, Wang D, Chang Y, Ma Q, Wang Y
Comput Struct Biotechnol J. 2024; 23:1786-1795.
PMID: 38707535
PMC: 11068546.
DOI: 10.1016/j.csbj.2024.04.039.
Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing.
Heydari A, Sindi S
Biophys Rev (Melville). 2024; 4(1):011306.
PMID: 38505815
PMC: 10903438.
DOI: 10.1063/5.0091135.
Deep learning in spatially resolved transcriptfomics: a comprehensive technical view.
Zahedi R, Ghamsari R, Argha A, Macphillamy C, Beheshti A, Alizadehsani R
Brief Bioinform. 2024; 25(2).
PMID: 38483255
PMC: 10939360.
DOI: 10.1093/bib/bbae082.
Spatial domain detection using contrastive self-supervised learning for spatial multi-omics technologies.
Yao J, Yu J, Caffo B, Page S, Martinowich K, Hicks S
bioRxiv. 2024; .
PMID: 38352580
PMC: 10862910.
DOI: 10.1101/2024.02.02.578662.
Macrophage profiling in atherosclerosis: understanding the unstable plaque.
Gianopoulos I, Daskalopoulou S
Basic Res Cardiol. 2024; 119(1):35-56.
PMID: 38244055
DOI: 10.1007/s00395-023-01023-z.
Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets.
Maden S, Kwon S, Huuki-Myers L, Collado-Torres L, Hicks S, Maynard K
Genome Biol. 2023; 24(1):288.
PMID: 38098055
PMC: 10722720.
DOI: 10.1186/s13059-023-03123-4.
A comprehensive overview of graph neural network-based approaches to clustering for spatial transcriptomics.
Liu T, Fang Z, Zhang Z, Yu Y, Li M, Yin M
Comput Struct Biotechnol J. 2023; 23:106-128.
PMID: 38089467
PMC: 10714345.
DOI: 10.1016/j.csbj.2023.11.055.
Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics.
Li Z, Chen X, Zhang X, Jiang R, Chen S
Genome Res. 2023; 33(10):1757-1773.
PMID: 37903634
PMC: 10691543.
DOI: 10.1101/gr.277891.123.
nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes.
Weber L, Saha A, Datta A, Hansen K, Hicks S
Nat Commun. 2023; 14(1):4059.
PMID: 37429865
PMC: 10333391.
DOI: 10.1038/s41467-023-39748-z.