» Articles » PMID: 34253737

Global Soil Moisture Data Derived Through Machine Learning Trained with In-situ Measurements

Overview
Journal Sci Data
Specialty Science
Date 2021 Jul 13
PMID 34253737
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

While soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0-10 cm, 10-30 cm, and 30-50 cm) at 0.25° spatial and daily temporal resolution over the period 2000-2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.

Citing Articles

Disentangling Effects of Vegetation Structure and Physiology on Land-Atmosphere Coupling.

Li W, Migliavacca M, Miralles D, Reichstein M, Anderegg W, Yang H Glob Chang Biol. 2025; 31(1):e70035.

PMID: 39840470 PMC: 11751765. DOI: 10.1111/gcb.70035.


Artificial intelligence for geoscience: Progress, challenges, and perspectives.

Zhao T, Wang S, Ouyang C, Chen M, Liu C, Zhang J Innovation (Camb). 2024; 5(5):100691.

PMID: 39285902 PMC: 11404188. DOI: 10.1016/j.xinn.2024.100691.


A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020.

Zhang K, Chen H, Ma N, Shang S, Wang Y, Xu Q Sci Data. 2024; 11(1):445.

PMID: 38702315 PMC: 11068785. DOI: 10.1038/s41597-024-03271-7.


Compounding effects in flood drivers challenge estimates of extreme river floods.

Jiang S, Tarasova L, Yu G, Zscheischler J Sci Adv. 2024; 10(13):eadl4005.

PMID: 38536931 PMC: 10971417. DOI: 10.1126/sciadv.adl4005.


A Data-Driven Approach for Building the Profile of Water Storage Capacity of Soils.

Zhou J, Briciu-Burghina C, Regan F, Ali M Sensors (Basel). 2023; 23(12).

PMID: 37420764 PMC: 10304599. DOI: 10.3390/s23125599.


References
1.
Jung M, Koirala S, Weber U, Ichii K, Gans F, Camps-Valls G . The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci Data. 2019; 6(1):74. PMC: 6536554. DOI: 10.1038/s41597-019-0076-8. View

2.
Reichle R, De Lannoy G, Liu Q, Koster R, Kimball J, Crow W . Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics. J Hydrometeorol. 2018; 18(12):3217-3237. PMC: 6196324. DOI: 10.1175/JHM-D-17-0130.1. View

3.
O S, Hou X, Orth R . Observational evidence of wildfire-promoting soil moisture anomalies. Sci Rep. 2020; 10(1):11008. PMC: 7335103. DOI: 10.1038/s41598-020-67530-4. View

4.
Kang J, Li X, Jin R, Ge Y, Wang J, Wang J . Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China. Sensors (Basel). 2014; 14(10):19095-114. PMC: 4239915. DOI: 10.3390/s141019095. View

5.
Tagesson T, Fensholt R, Guiro I, Rasmussen M, Huber S, Mbow C . Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability. Glob Chang Biol. 2014; 21(1):250-64. DOI: 10.1111/gcb.12734. View