» Articles » PMID: 34248283

Developing an Optical Interferometric Detection Method Based Biosensor for Detecting Specific SARS-CoV-2 Immunoglobulins in Serum and Saliva, and Their Corresponding ELISA Correlation

Overview
Date 2021 Jul 12
PMID 34248283
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

The standard rapid approach for the diagnosis of coronavirus disease 2019 (COVID-19) is the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. The detection of specific anti-SARS-CoV-2 immunoglobulins is crucial for screening people who have been exposed to the virus, whether or not they presented symptoms. Recent publications report different methods for the detection of specific IgGs, IgMs, and IgAs against SARS-CoV-2; these methods mainly detect immunoglobulins in the serum using conventional techniques such as rapid lateral flow tests or enzyme-linked immunosorbent assay (ELISA). In this article, we report the production of recombinant SARS-CoV-2 spike protein and the development of a rapid, reliable, cost-effective test, capable of detecting immunoglobulins in serum and saliva samples. This method is based on interferometric optical detection. The results obtained using this method and those obtained using ELISA were compared. Owing to its low cost and simplicity, this test can be used periodically for the early detection, surveillance, detection of immunity, and control of the spread of COVID-19.

Citing Articles

Label-free optical biosensors in the pandemic era.

Nava G, Zanchetta G, Giavazzi F, Buscaglia M Nanophotonics. 2024; 11(18):4159-4181.

PMID: 39634532 PMC: 11502114. DOI: 10.1515/nanoph-2022-0354.


Phosphorylated Tau at T181 accumulates in the serum of hibernating Syrian hamsters and rapidly disappears after arousal.

Leon-Espinosa G, Murillo A, Turegano-Lopez M, DeFelipe J, Holgado M Sci Rep. 2024; 14(1):20562.

PMID: 39232030 PMC: 11375040. DOI: 10.1038/s41598-024-71481-5.


Recent progress on field-effect transistor-based biosensors: device perspective.

Smaani B, Nafa F, Benlatrech M, Mahdi I, Akroum H, Walid Azizi M Beilstein J Nanotechnol. 2024; 15:977-994.

PMID: 39136041 PMC: 11318611. DOI: 10.3762/bjnano.15.80.


Reports on the sensitivity enhancement in interferometric based biosensors by biotin-streptavidin system.

Murillo A, Holgado M, Laguna M Heliyon. 2023; 9(12):e23123.

PMID: 38149195 PMC: 10750048. DOI: 10.1016/j.heliyon.2023.e23123.


A New Optical Interferometric Biosensing System Enhanced with Nanoparticles for Alzheimer's Disease in Serum.

Murillo A, Laguna M, Valle L, Tramarin L, Ramirez Y, Lavin A Biosensors (Basel). 2023; 13(7).

PMID: 37504106 PMC: 10377685. DOI: 10.3390/bios13070707.


References
1.
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A . Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnol Adv. 2015; 33(6 Pt 2):1177-93. DOI: 10.1016/j.biotechadv.2015.05.008. View

2.
Sanza F, Holgado M, Ortega F, Casquel R, Lopez-Romero D, Banuls M . Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing. Biosens Bioelectron. 2011; 26(12):4842-7. DOI: 10.1016/j.bios.2011.06.010. View

3.
Homola J . Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008; 108(2):462-93. DOI: 10.1021/cr068107d. View

4.
Casquel R, Holgado M, Laguna M, Hernandez A, Santamaria B, Lavin A . Engineering vertically interrogated interferometric sensors for optical label-free biosensing. Anal Bioanal Chem. 2020; 412(14):3285-3297. PMC: 7214506. DOI: 10.1007/s00216-020-02411-3. View

5.
Belouzard S, Millet J, Licitra B, Whittaker G . Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012; 4(6):1011-33. PMC: 3397359. DOI: 10.3390/v4061011. View