» Articles » PMID: 32055908

Engineering Vertically Interrogated Interferometric Sensors for Optical Label-free Biosensing

Overview
Specialty Chemistry
Date 2020 Feb 15
PMID 32055908
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

In this work, we review the technology of vertically interrogated optical biosensors from the point of view of engineering. Vertical sensors present several advantages in the fabrication processes and in the light coupling systems, compared with other interferometric sensors. Four different interrelated aspects of the design are identified and described: sensing cell design, optical techniques used in the interrogation, fabrication processes, fluidics, and biofunctionalization of the sensing surface. The designer of a vertical sensor should decide carefully which solution to adopt on each aspect prior to finally integrating all the components in a single platform. Complexity, cost, and reliability of this platform will be determined by the decisions taken on each of the design process. We focus on the research and experience acquired by our group during last years in the field of optical biosensors.

Citing Articles

Phosphorylated Tau at T181 accumulates in the serum of hibernating Syrian hamsters and rapidly disappears after arousal.

Leon-Espinosa G, Murillo A, Turegano-Lopez M, DeFelipe J, Holgado M Sci Rep. 2024; 14(1):20562.

PMID: 39232030 PMC: 11375040. DOI: 10.1038/s41598-024-71481-5.


Comparative analysis of electrophoresis and interferometric optical detection method for molecular weight determination of proteins.

Santamaria B, L Hernandez A, Laguna M, Holgado M Heliyon. 2024; 10(16):e35932.

PMID: 39229532 PMC: 11369481. DOI: 10.1016/j.heliyon.2024.e35932.


A review of Optical Point-of-Care devices to Estimate the Technology Transfer of These Cutting-Edge Technologies.

Pioz M, Espinosa R, Laguna M, Santamaria B, Murillo A, Hueros A Biosensors (Basel). 2022; 12(12).

PMID: 36551058 PMC: 9776401. DOI: 10.3390/bios12121091.


Efficient Chemical Surface Modification Protocol on SiO Transducers Applied to MMP9 Biosensing.

Hernandez A, Pujari S, Laguna M, Santamaria B, Zuilhof H, Holgado M Sensors (Basel). 2021; 21(23).

PMID: 34884157 PMC: 8662398. DOI: 10.3390/s21238156.


Hydrogel-based holographic sensors and biosensors: past, present, and future.

Lucio M, Cubells-Gomez A, Maquieira A, Banuls M Anal Bioanal Chem. 2021; 414(2):993-1014.

PMID: 34757475 DOI: 10.1007/s00216-021-03746-1.


References
1.
Visser D, Choudhury B, Krasovska I, Anand S . Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays. Opt Express. 2017; 25(11):12171-12181. DOI: 10.1364/OE.25.012171. View

2.
Calvo M, Gonzalez-Garcia L, Parra-Barranco J, Barranco A, Jimenez-Solano A, Gonzalez-Elipe A . Flexible Distributed Bragg Reflectors from Nanocolumnar Templates. Adv Opt Mater. 2015; 3(2):171-175. PMC: 4558613. DOI: 10.1002/adom.201400338. View

3.
Homola J . Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008; 108(2):462-93. DOI: 10.1021/cr068107d. View

4.
Hernandez A, Casquel R, Holgado M, Cornago I, Sanza F, Santamaria B . Arrays of resonant nanopillars for biochemical sensing. Opt Lett. 2015; 40(10):2370-2. DOI: 10.1364/OL.40.002370. View

5.
Fan X, White I, Shopova S, Zhu H, Suter J, Sun Y . Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta. 2008; 620(1-2):8-26. PMC: 10069299. DOI: 10.1016/j.aca.2008.05.022. View