Designing an Ultrathin Film Spectrometer Based on III-Nitride Light-Absorbing Nanostructures
Overview
Affiliations
In this paper, a spectrometer design enabling an ultrathin form factor is proposed. Local strain engineering in group III-nitride semiconductor nanostructured light-absorbing elements enables the integration of a large number of photodetectors on the chip exhibiting different absorption cut-off wavelengths. The introduction of a simple cone-shaped back-reflector at the bottom side of the substrate enables a high light-harvesting efficiency design, which also improves the accuracy of spectral reconstruction. The cone-shaped back-reflector can be readily fabricated using mature patterned sapphire substrate processes. Our design was validated via numerical simulations with experimentally measured photodetector responsivities as the input. A light-harvesting efficiency as high as 60% was achieved with five InGaN/GaN multiple quantum wells for the visible wavelengths.
Pang Y, Jin M Micromachines (Basel). 2023; 14(6).
PMID: 37374782 PMC: 10304166. DOI: 10.3390/mi14061197.
Ultrathin Optics-Free Spectrometer with Monolithically Integrated LED Excitation.
Sarwar T, Ku P Micromachines (Basel). 2022; 13(3).
PMID: 35334674 PMC: 8949810. DOI: 10.3390/mi13030382.