» Articles » PMID: 29445152

Fourier Transform Spectrometer on Silicon with Thermo-optic Non-linearity and Dispersion Correction

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Feb 16
PMID 29445152
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Miniaturized integrated spectrometers will have unprecedented impact on applications ranging from unmanned aerial vehicles to mobile phones, and silicon photonics promises to deliver compact, cost-effective devices. Mirroring its ubiquitous free-space counterpart, a silicon photonics-based Fourier transform spectrometer (Si-FTS) can bring broadband operation and fine resolution to the chip scale. Here we present the modeling and experimental demonstration of a thermally tuned Si-FTS accounting for dispersion, thermo-optic non-linearity, and thermal expansion. We show how these effects modify the relation between the spectrum and interferogram of a light source and we develop a quantitative correction procedure through calibration with a tunable laser. We retrieve a broadband spectrum (7 THz around 193.4 THz with 0.38-THz resolution consuming 2.5 W per heater) and demonstrate the Si-FTS resilience to fabrication variations-a major advantage for large-scale manufacturing. Providing design flexibility and robustness, the Si-FTS is poised to become a fundamental building block for on-chip spectroscopy.

Citing Articles

Thermo-Tuning Fourier Transform Spectrometer Based on SU-8 Waveguide.

Shao Q, Ma X, Li M, He J Polymers (Basel). 2025; 17(3).

PMID: 39940465 PMC: 11821138. DOI: 10.3390/polym17030261.


On-chip micro-ring resonator array spectrum detection system based on convex optimization algorithm.

Chen X, Gan X, Zhu Y, Zhang J Nanophotonics. 2024; 12(4):715-724.

PMID: 39679337 PMC: 11636467. DOI: 10.1515/nanoph-2022-0672.


Fast and low energy-consumption integrated Fourier-transform spectrometer based on thin-film lithium niobate.

Wang X, Ruan Z, Chen K, Chen G, Wang M, Chen B Nanophotonics. 2024; 13(21):3985-3993.

PMID: 39634961 PMC: 11501065. DOI: 10.1515/nanoph-2024-0219.


Chip-scale sensor for spectroscopic metrology.

Yao C, Zhang W, Bao P, Ma J, Zhuo W, Chen M Nat Commun. 2024; 15(1):10305.

PMID: 39604361 PMC: 11603224. DOI: 10.1038/s41467-024-54708-x.


Denoising-autoencoder-facilitated MEMS computational spectrometer with enhanced resolution on a silicon photonic chip.

Zhou J, Zhang H, Qiao Q, Chen H, Huang Q, Wang H Nat Commun. 2024; 15(1):10260.

PMID: 39592609 PMC: 11599558. DOI: 10.1038/s41467-024-54704-1.


References
1.
Kyotoku B, Chen L, Lipson M . Sub-nm resolution cavity enhanced microspectrometer. Opt Express. 2010; 18(1):102-7. DOI: 10.1364/OE.18.000102. View

2.
Zhou Z, Yin B, Michel J . Corrigendum: On-chip light sources for silicon photonics. Light Sci Appl. 2018; 5(4):e16098. PMC: 6059952. DOI: 10.1038/lsa.2016.98. View

3.
Nie X, Ryckeboer E, Roelkens G, Baets R . CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform. Opt Express. 2017; 25(8):A409-A418. DOI: 10.1364/OE.25.00A409. View

4.
Reich G . Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev. 2005; 57(8):1109-43. DOI: 10.1016/j.addr.2005.01.020. View

5.
Wang Y, Gao S, Wang K, Skafidas E . Ultra-broadband and low-loss 3  dB optical power splitter based on adiabatic tapered silicon waveguides. Opt Lett. 2016; 41(9):2053-6. DOI: 10.1364/OL.41.002053. View