» Articles » PMID: 34172981

Respiration-driven Triboelectric Nanogenerators for Biomedical Applications

Overview
Journal EcoMat
Date 2021 Jun 26
PMID 34172981
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

As a fundamental and ubiquitous body motion, respiration offers a large amount of biomechanical energy with an average power up to the Watt level through movements of multiple muscles. The energy from respiration featured with excellent stability, accessibility and continuality inspires the design and engineering of biomechanical energy harvesting devices, such as triboelectric nanogenerators (TENGs), to realize human-powered electronics. This review article is thus dedicated to the emerging respiration-driven TENG technology, covering fundamentals, applications, and perspectives. Specifically, the human breathing mechanics are first introduced serving as the base for the developments of TENG devices with different configurations. Biomedical applications including electrical energy generation, healthcare monitoring, air filtration, gas sensing, electrostimulation, and powering implantable medical devices are then analyzed focusing on the design-application relationships. At last, current developments are summarized and critical challenges for driving these intriguing developments toward practical applications are discussed together with promising solutions.

Citing Articles

Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill.

Zou Y, Gai Y, Tan P, Jiang D, Qu X, Xue J Fundam Res. 2024; 2(4):619-628.

PMID: 38933997 PMC: 11197527. DOI: 10.1016/j.fmre.2022.01.003.


Advances in Smart Photovoltaic Textiles.

Ali I, Islam M, Yin J, Eichhorn S, Chen J, Karim N ACS Nano. 2024; 18(5):3871-3915.

PMID: 38261716 PMC: 10851667. DOI: 10.1021/acsnano.3c10033.


Skin-Contact Triboelectric Nanogenerator for Energy Harvesting and Motion Sensing: Principles, Challenges, and Perspectives.

Matin Nazar A, Mohsenian R, Rayegani A, Shadfar M, Jiao P Biosensors (Basel). 2023; 13(9).

PMID: 37754106 PMC: 10526904. DOI: 10.3390/bios13090872.


Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications.

Choi D, Lee Y, Lin Z, Cho S, Kim M, Ao C ACS Nano. 2023; 17(12):11087-11219.

PMID: 37219021 PMC: 10312207. DOI: 10.1021/acsnano.2c12458.


Biophysical Sensors Based on Triboelectric Nanogenerators.

Ma Z, Cao X, Wang N Biosensors (Basel). 2023; 13(4).

PMID: 37185498 PMC: 10136238. DOI: 10.3390/bios13040423.


References
1.
Feng H, Zhao C, Tan P, Liu R, Chen X, Li Z . Nanogenerator for Biomedical Applications. Adv Healthc Mater. 2018; 7(10):e1701298. DOI: 10.1002/adhm.201701298. View

2.
Ouyang H, Liu Z, Li N, Shi B, Zou Y, Xie F . Symbiotic cardiac pacemaker. Nat Commun. 2019; 10(1):1821. PMC: 6478903. DOI: 10.1038/s41467-019-09851-1. View

3.
Su Y, Fu Y, Manthiram A . Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys Chem Chem Phys. 2012; 14(42):14495-9. DOI: 10.1039/c2cp42796f. View

4.
Argentina M, Mahadevan L . Fluid-flow-induced flutter of a flag. Proc Natl Acad Sci U S A. 2005; 102(6):1829-34. PMC: 548550. DOI: 10.1073/pnas.0408383102. View

5.
Cha H, Kim J, Lee Y, Cho J, Park M . Issues and Challenges Facing Flexible Lithium-Ion Batteries for Practical Application. Small. 2017; 14(43):e1702989. DOI: 10.1002/smll.201702989. View