Moqri M, Poganik J, Horvath S, Gladyshev V
Nat Aging. 2025; .
PMID: 39994479
DOI: 10.1038/s43587-025-00833-1.
Wu X, Lu C, Deng Z, Xiao W, Ni H, Zhao C
Clin Epigenetics. 2025; 17(1):29.
PMID: 39980002
PMC: 11841319.
DOI: 10.1186/s13148-025-01837-9.
Shealy E, Schwartz T, Cox R, Reedy A, Parrott B
Sci Adv. 2025; 11(5):eadq3589.
PMID: 39888991
PMC: 11784858.
DOI: 10.1126/sciadv.adq3589.
Blokhina Y, Buchwalter A
PLoS One. 2024; 19(12):e0310626.
PMID: 39666677
PMC: 11637357.
DOI: 10.1371/journal.pone.0310626.
Olova N
Epigenomics. 2024; 17(1):1-3.
PMID: 39584805
PMC: 11703506.
DOI: 10.1080/17501911.2024.2432851.
Profiling the transcriptomic age of single-cells in humans.
Zakar-Polyak E, Csordas A, Palovics R, Kerepesi C
Commun Biol. 2024; 7(1):1397.
PMID: 39462118
PMC: 11513945.
DOI: 10.1038/s42003-024-07094-5.
Fundamental equations linking methylation dynamics to maximum lifespan in mammals.
Horvath S, Zhang J, Haghani A, Lu A, Fei Z
Nat Commun. 2024; 15(1):8093.
PMID: 39285199
PMC: 11405513.
DOI: 10.1038/s41467-024-51855-z.
Challenges and recommendations for the translation of biomarkers of aging.
Herzog C, Goeminne L, Poganik J, Barzilai N, Belsky D, Betts-LaCroix J
Nat Aging. 2024; 4(10):1372-1383.
PMID: 39285015
DOI: 10.1038/s43587-024-00683-3.
Epistemic uncertainty challenges aging clock reliability in predicting rejuvenation effects.
Kriukov D, Kuzmina E, Efimov E, Dylov D, Khrameeva E
Aging Cell. 2024; 23(11):e14283.
PMID: 39072888
PMC: 11561706.
DOI: 10.1111/acel.14283.
A multiomic atlas of the aging hippocampus reveals molecular changes in response to environmental enrichment.
Perez R, Tezanos P, Penarroya A, Gonzalez-Ramon A, Urdinguio R, Gancedo-Verdejo J
Nat Commun. 2024; 15(1):5829.
PMID: 39013876
PMC: 11252340.
DOI: 10.1038/s41467-024-49608-z.
Aging clocks based on accumulating stochastic variation.
Meyer D, Schumacher B
Nat Aging. 2024; 4(6):871-885.
PMID: 38724736
PMC: 11186771.
DOI: 10.1038/s43587-024-00619-x.
Nature of epigenetic aging from a single-cell perspective.
Tarkhov A, Lindstrom-Vautrin T, Zhang S, Ying K, Moqri M, Zhang B
Nat Aging. 2024; 4(6):854-870.
PMID: 38724733
DOI: 10.1038/s43587-024-00616-0.
Tracking single-cell evolution using clock-like chromatin accessibility loci.
Xiao Y, Jin W, Ju L, Fu J, Wang G, Yu M
Nat Biotechnol. 2024; .
PMID: 38724668
DOI: 10.1038/s41587-024-02241-z.
The beginning of becoming a human.
Loseva P, Gladyshev V
Aging (Albany NY). 2024; 16(9):8378-8395.
PMID: 38713165
PMC: 11131989.
DOI: 10.18632/aging.205824.
Neuron-specific chromatin disruption at CpG islands and aging-related regions in Kabuki syndrome mice.
Boukas L, Luperchio T, Razi A, Hansen K, Bjornsson H
Genome Res. 2024; 34(5):696-710.
PMID: 38702196
PMC: 11216309.
DOI: 10.1101/gr.278416.123.
Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation.
Mitchell W, Goeminne L, Tyshkovskiy A, Zhang S, Chen J, Paulo J
Elife. 2024; 12.
PMID: 38517750
PMC: 10959535.
DOI: 10.7554/eLife.90579.
DNA methylation-based estimators of telomere length show low correspondence with paternal age at conception and other measures of external validity of telomere length.
Eisenberg D, Ryan C, Lee N, Carba D, MacIsaac J, Dever K
Geroscience. 2024; 46(4):3957-3969.
PMID: 38466455
PMC: 11226585.
DOI: 10.1007/s11357-024-01114-2.
The long and winding road of reprogramming-induced rejuvenation.
Yucel A, Gladyshev V
Nat Commun. 2024; 15(1):1941.
PMID: 38431638
PMC: 10908844.
DOI: 10.1038/s41467-024-46020-5.
Epigenetic drift underlies epigenetic clock signals, but displays distinct responses to lifespan interventions, development, and cellular dedifferentiation.
Bertucci-Richter E, Shealy E, Parrott B
Aging (Albany NY). 2024; 16(2):1002-1020.
PMID: 38285616
PMC: 10866415.
DOI: 10.18632/aging.205503.
TIME-seq reduces time and cost of DNA methylation measurement for epigenetic clock construction.
Griffin P, Kane A, Trapp A, Li J, Arnold M, Poganik J
Nat Aging. 2024; 4(2):261-274.
PMID: 38200273
PMC: 11332592.
DOI: 10.1038/s43587-023-00555-2.