» Articles » PMID: 34165909

Liposomes and Extracellular Vesicles As Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization

Overview
Date 2021 Jun 24
PMID 34165909
Citations 96
Authors
Affiliations
Soon will be listed here.
Abstract

Over the past decades, lipid-based nanoparticle drug delivery systems (DDS) have caught the attention of researchers worldwide, encouraging the field to rapidly develop improved ways for effective drug delivery. One of the most prominent examples is liposomes, which are spherical shaped artificial vesicles composed of lipid bilayers and able to encapsulate both hydrophilic and hydrophobic materials. At the same time, biological nanoparticles naturally secreted by cells, called extracellular vesicles (EVs), have emerged as promising more complex biocompatible DDS. In this review paper, the differences and similarities in the composition of both vesicles are evaluated, and critical mediators that affect their pharmacokinetics are elucidate. Different strategies that have been assessed to tweak the pharmacokinetics of both liposomes and EVs are explored, detailing the effects on circulation time, targeting capacity, and cytoplasmic delivery of therapeutic cargo. Finally, whether a hybrid system, consisting of a combination of only the critical constituents of both vesicles, could offer the best of both worlds is discussed. Through these topics, novel leads for further research are provided and, more importantly, gain insight in what the liposome field and the EV field can learn from each other.

Citing Articles

A synthetic model of bioinspired liposomes to study cancer-cell derived extracellular vesicles and their uptake by recipient cells.

Lopez R, Ben El Khyat C, Chen Y, Tsering T, Dickinson K, Bustamante P Sci Rep. 2025; 15(1):8430.

PMID: 40069225 PMC: 11897354. DOI: 10.1038/s41598-025-91873-5.


Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells.

Balaraman A, Babu M, Afzal M, Sanghvi G, M M R, Gupta S Regen Ther. 2025; 28:558-572.

PMID: 40034540 PMC: 11872554. DOI: 10.1016/j.reth.2025.01.019.


Leveraging nature's nanocarriers: Translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications.

Chen Y, Douanne N, Wu T, Kaur I, Tsering T, Erzingatzian A Sci Adv. 2025; 11(9):eads5249.

PMID: 40009680 PMC: 11864201. DOI: 10.1126/sciadv.ads5249.


Extracellular Vesicles as Tools for Crossing the Blood-Brain Barrier to Treat Lysosomal Storage Diseases.

Lerussi G, Villagrasa-Araya V, Molto-Abad M, Del Toro M, Pintos-Morell G, Seras-Franzoso J Life (Basel). 2025; 15(1).

PMID: 39860010 PMC: 11766495. DOI: 10.3390/life15010070.


Biodegradable and Stimuli-Responsive Nanomaterials for Targeted Drug Delivery in Autoimmune Diseases.

Parvin N, Joo S, Mandal T J Funct Biomater. 2025; 16(1).

PMID: 39852580 PMC: 11766201. DOI: 10.3390/jfb16010024.


References
1.
Levchenko T, Rammohan R, Lukyanov A, Whiteman K, Torchilin V . Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm. 2002; 240(1-2):95-102. DOI: 10.1016/s0378-5173(02)00129-1. View

2.
Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T . Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013; 165(2):77-84. DOI: 10.1016/j.jbiotec.2013.03.013. View

3.
Rodallec A, Sicard G, Giacometti S, Carre M, Maia T, Valette M . Tumor uptake and associated greater efficacy of anti-Her2 immunoliposome does not rely on Her2 expression status: study of a docetaxel-trastuzumab immunoliposome on Her2+ breast cancer model (SKBR3). Anticancer Drugs. 2020; 31(5):463-472. DOI: 10.1097/CAD.0000000000000878. View

4.
Zhao J, Santino F, Giacomini D, Gentilucci L . Integrin-Targeting Peptides for the Design of Functional Cell-Responsive Biomaterials. Biomedicines. 2020; 8(9). PMC: 7555639. DOI: 10.3390/biomedicines8090307. View

5.
Rana S, Yue S, Stadel D, Zoller M . Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol. 2012; 44(9):1574-84. DOI: 10.1016/j.biocel.2012.06.018. View