» Articles » PMID: 34165856

Beam Search for Automated Design and Scoring of Novel ROR Ligands with Machine Intelligence*

Overview
Specialty Chemistry
Date 2021 Jun 24
PMID 34165856
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Chemical language models enable de novo drug design without the requirement for explicit molecular construction rules. While such models have been applied to generate novel compounds with desired bioactivity, the actual prioritization and selection of the most promising computational designs remains challenging. Herein, we leveraged the probabilities learnt by chemical language models with the beam search algorithm as a model-intrinsic technique for automated molecule design and scoring. Prospective application of this method yielded novel inverse agonists of retinoic acid receptor-related orphan receptors (RORs). Each design was synthesizable in three reaction steps and presented low-micromolar to nanomolar potency towards RORγ. This model-intrinsic sampling technique eliminates the strict need for external compound scoring functions, thereby further extending the applicability of generative artificial intelligence to data-driven drug discovery.

Citing Articles

Comparative Evaluation and Profiling of Chemical Tools for the Nuclear Hormone Receptor Family 2.

Lewandowski M, Busch R, Marschner J, Merk D ACS Pharmacol Transl Sci. 2025; .

PMID: 40046426 PMC: 7617459. DOI: 10.1021/acsptsci.4c00719.


Chemogenomics for steroid hormone receptors (NR3).

Schallmayer E, Isigkeit L, Elson L, Muller S, Knapp S, Marschner J Commun Chem. 2025; 8(1):29.

PMID: 39900826 PMC: 11790914. DOI: 10.1038/s42004-025-01427-z.


Automated design of multi-target ligands by generative deep learning.

Isigkeit L, Hormann T, Schallmayer E, Scholz K, Lillich F, Ehrler J Nat Commun. 2024; 15(1):7946.

PMID: 39261471 PMC: 11390726. DOI: 10.1038/s41467-024-52060-8.


A High-Quality Photoswitchable Probe that Selectively and Potently Regulates the Transcription Factor RORγ.

Reynders M, Willems S, Marschner J, Wein T, Merk D, Thorn-Seshold O Angew Chem Int Ed Engl. 2024; 63(49):e202410139.

PMID: 39248642 PMC: 11586699. DOI: 10.1002/anie.202410139.


Chemical language modeling with structured state space sequence models.

Ozcelik R, de Ruiter S, Criscuolo E, Grisoni F Nat Commun. 2024; 15(1):6176.

PMID: 39039051 PMC: 11263548. DOI: 10.1038/s41467-024-50469-9.


References
1.
Ertl P, Schuffenhauer A . Cheminformatics analysis of natural products: lessons from nature inspiring the design of new drugs. Prog Drug Res. 2008; 66:217, 219-35. DOI: 10.1007/978-3-7643-8595-8_4. View

2.
Yuan W, Jiang D, Nambiar D, Liew L, Hay M, Bloomstein J . Chemical Space Mimicry for Drug Discovery. J Chem Inf Model. 2017; 57(4):875-882. PMC: 5802964. DOI: 10.1021/acs.jcim.6b00754. View

3.
Newman D, Cragg G . Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod. 2020; 83(3):770-803. DOI: 10.1021/acs.jnatprod.9b01285. View

4.
LeCun Y, Bengio Y, Hinton G . Deep learning. Nature. 2015; 521(7553):436-44. DOI: 10.1038/nature14539. View

5.
Awale M, Sirockin F, Stiefl N, Reymond J . Drug Analogs from Fragment-Based Long Short-Term Memory Generative Neural Networks. J Chem Inf Model. 2019; 59(4):1347-1356. DOI: 10.1021/acs.jcim.8b00902. View