» Articles » PMID: 34061505

Cell-Free Characterization of Coherent Feed-Forward Loop-Based Synthetic Genetic Circuits

Overview
Journal ACS Synth Biol
Date 2021 Jun 1
PMID 34061505
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Regulatory pathways inside living cells employ feed-forward architectures to fulfill essential signal processing functions that aid in the interpretation of various types of inputs through noise-filtering, fold-change detection and adaptation. Although it has been demonstrated computationally that a coherent feed-forward loop (CFFL) can function as noise filter, a property essential to decoding complex temporal signals, this motif has not been extensively characterized experimentally or integrated into larger networks. Here we use post-transcriptional regulation to implement and characterize a synthetic CFFL in an cell-free transcription-translation system and build larger composite feed-forward architectures. We employ microfluidic flow reactors to probe the response of the CFFL circuit using both persistent and short, noise-like inputs and analyze the influence of different circuit components on the steady-state and dynamics of the output. We demonstrate that our synthetic CFFL implementation can reliably repress background activity compared to a reference circuit, but displays low potential as a temporal filter, and validate these findings using a computational model. Our results offer practical insight into the putative noise-filtering behavior of CFFLs and show that this motif can be used to mitigate leakage and increase the fold-change of the output of synthetic genetic circuits.

Citing Articles

Feed-forward loop improves the transient dynamics of an antithetic biological controller.

Spartalis T, Foo M, Tang X J R Soc Interface. 2025; 22(222):20240467.

PMID: 39837484 PMC: 11750367. DOI: 10.1098/rsif.2024.0467.


Cell-Free Gene Expression: Methods and Applications.

Hunt A, Rasor B, Seki K, Ekas H, Warfel K, Karim A Chem Rev. 2024; 125(1):91-149.

PMID: 39700225 PMC: 11719329. DOI: 10.1021/acs.chemrev.4c00116.


Transition paths across the EMT landscape are dictated by network logic.

Dey A, MacLean A bioRxiv. 2024; .

PMID: 39677780 PMC: 11642844. DOI: 10.1101/2024.12.03.626660.


Regulatory Components for Bacterial Cell-Free Systems Engineering.

Lee P, Maerkl S ACS Synth Biol. 2024; 13(12):3827-3841.

PMID: 39509282 PMC: 11669159. DOI: 10.1021/acssynbio.4c00574.


RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics.

Koksaldi I, Park D, Atilla A, Kang H, Kim J, Safak Seker U ACS Synth Biol. 2024; 13(4):1026-1037.

PMID: 38588603 PMC: 11036506. DOI: 10.1021/acssynbio.3c00698.


References
1.
Borkowski O, Ceroni F, Stan G, Ellis T . Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Curr Opin Microbiol. 2016; 33:123-130. DOI: 10.1016/j.mib.2016.07.009. View

2.
Nitzan M, Rehani R, Margalit H . Integration of Bacterial Small RNAs in Regulatory Networks. Annu Rev Biophys. 2017; 46:131-148. DOI: 10.1146/annurev-biophys-070816-034058. View

3.
Yelleswarapu M, van der Linden A, van Sluijs B, Pieters P, Dubuc E, de Greef T . Sigma Factor-Mediated Tuning of Bacterial Cell-Free Synthetic Genetic Oscillators. ACS Synth Biol. 2018; 7(12):2879-2887. PMC: 6305555. DOI: 10.1021/acssynbio.8b00300. View

4.
Tej S, Gaurav K, Mukherji S . Small RNA driven feed-forward loop: critical role of sRNA in noise filtering. Phys Biol. 2019; 16(4):046008. DOI: 10.1088/1478-3975/ab1563. View

5.
Wall M, Dunlop M, Hlavacek W . Multiple functions of a feed-forward-loop gene circuit. J Mol Biol. 2005; 349(3):501-14. DOI: 10.1016/j.jmb.2005.04.022. View