» Articles » PMID: 34048697

Ventral Pallidum DRD3 Potentiates a Pallido-habenular Circuit Driving Accumbal Dopamine Release and Cocaine Seeking

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2021 May 28
PMID 34048697
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Drugs of abuse induce persistent remodeling of reward circuit function, a process thought to underlie the emergence of drug craving and relapse to drug use. However, how circuit-specific, drug-induced molecular and cellular plasticity can have distributed effects on the mesolimbic dopamine reward system to facilitate relapse to drug use is not fully elucidated. Here, we demonstrate that dopamine receptor D3 (DRD3)-dependent plasticity in the ventral pallidum (VP) drives potentiation of dopamine release in the nucleus accumbens during relapse to cocaine seeking after abstinence. We show that two distinct VP DRD3 neuronal populations projecting to either the lateral habenula (LHb) or the ventral tegmental area (VTA) display different patterns of activity during drug seeking following abstinence from cocaine self-administration and that selective suppression of elevated activity or DRD3 signaling in the LHb-projecting population reduces drug seeking. Together, our results uncover how circuit-specific DRD3-mediated plasticity contributes to the process of drug relapse.

Citing Articles

Ventral Pallidal GABAergic Neurons Drive Consumption in Male, But Not Female, Rats.

Scott A, Paulson A, Prill C, Kermoade K, Newell B, Eckenwiler E eNeuro. 2025; 12(2).

PMID: 39809537 PMC: 11794971. DOI: 10.1523/ENEURO.0245-24.2025.


Transcriptomic landscape of mammalian ventral pallidum at single-cell resolution.

Yang L, Fang L, Lynch M, Xu C, Hahm H, Zhang Y Sci Adv. 2024; 10(50):eadq6017.

PMID: 39661664 PMC: 11633743. DOI: 10.1126/sciadv.adq6017.


Dissociable control of motivation and reinforcement by distinct ventral striatal dopamine receptors.

Enriquez-Traba J, Arenivar M, Yarur-Castillo H, Noh C, Flores R, Weil T Nat Neurosci. 2024; 28(1):105-121.

PMID: 39653808 DOI: 10.1038/s41593-024-01819-9.


Motivating interest in D3 dopamine receptors.

Tritsch N Nat Neurosci. 2024; 28(1):6-7.

PMID: 39653807 DOI: 10.1038/s41593-024-01820-2.


Structural and functional correlates of olfactory reward processing in behavioral variant frontotemporal dementia.

Sokolowski A, Brown J, Roy A, Cryns N, Scheffler A, Hardy E Cortex. 2024; 181:47-58.

PMID: 39488010 PMC: 11809299. DOI: 10.1016/j.cortex.2024.09.011.


References
1.
Farrell M, Schoch H, Mahler S . Modeling cocaine relapse in rodents: Behavioral considerations and circuit mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 87(Pt A):33-47. PMC: 6034989. DOI: 10.1016/j.pnpbp.2018.01.002. View

2.
Ikemoto S, Yang C, Tan A . Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res. 2015; 290:17-31. PMC: 4447603. DOI: 10.1016/j.bbr.2015.04.018. View

3.
Mengual E, Pickel V . Ultrastructural immunocytochemical localization of the dopamine D2 receptor and tyrosine hydroxylase in the rat ventral pallidum. Synapse. 2002; 43(3):151-62. DOI: 10.1002/syn.10033. View

4.
Tziortzi A, Searle G, Tzimopoulou S, Salinas C, Beaver J, Jenkinson M . Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. Neuroimage. 2010; 54(1):264-77. DOI: 10.1016/j.neuroimage.2010.06.044. View

5.
Richfield E, Penney J, Young A . Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience. 1989; 30(3):767-77. DOI: 10.1016/0306-4522(89)90168-1. View