» Articles » PMID: 28441114

Neural Circuitry of Reward Prediction Error

Overview
Specialty Neurology
Date 2017 Apr 26
PMID 28441114
Citations 137
Authors
Affiliations
Soon will be listed here.
Abstract

Dopamine neurons facilitate learning by calculating reward prediction error, or the difference between expected and actual reward. Despite two decades of research, it remains unclear how dopamine neurons make this calculation. Here we review studies that tackle this problem from a diverse set of approaches, from anatomy to electrophysiology to computational modeling and behavior. Several patterns emerge from this synthesis: that dopamine neurons themselves calculate reward prediction error, rather than inherit it passively from upstream regions; that they combine multiple separate and redundant inputs, which are themselves interconnected in a dense recurrent network; and that despite the complexity of inputs, the output from dopamine neurons is remarkably homogeneous and robust. The more we study this simple arithmetic computation, the knottier it appears to be, suggesting a daunting (but stimulating) path ahead for neuroscience more generally.

Citing Articles

Natural behaviour is learned through dopamine-mediated reinforcement.

Kasdin J, Duffy A, Nadler N, Raha A, Fairhall A, Stachenfeld K Nature. 2025; .

PMID: 40074908 DOI: 10.1038/s41586-025-08729-1.


Dopamine activity encodes the changing valence of the same stimulus in conditioned taste aversion paradigms.

Loh M, Hurh S, Bazzino P, Donka R, Keinath A, Roitman J Elife. 2025; 13.

PMID: 40042246 PMC: 11882140. DOI: 10.7554/eLife.103260.


Omissions of threat trigger subjective relief and prediction error-like signaling in the human reward and salience systems.

Willems A, Van Oudenhove L, Vervliet B Elife. 2025; 12.

PMID: 40008871 PMC: 11875134. DOI: 10.7554/eLife.91400.


Contextual cues facilitate dynamic value encoding in the mesolimbic dopamine system.

Fraser K, Collins V, Wolff A, Ottenheimer D, Bornhoft K, Pat F Curr Biol. 2025; 35(4):746-760.e5.

PMID: 39855205 PMC: 11859769. DOI: 10.1016/j.cub.2024.12.031.


Distributed representations of temporally accumulated reward prediction errors in the mouse cortex.

Makino H, Suhaimi A Sci Adv. 2025; 11(4):eadi4782.

PMID: 39841828 PMC: 11753378. DOI: 10.1126/sciadv.adi4782.


References
1.
Rao R, Ballard D . Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999; 2(1):79-87. DOI: 10.1038/4580. View

2.
Contreras-Vidal J, Schultz W . A predictive reinforcement model of dopamine neurons for learning approach behavior. J Comput Neurosci. 1999; 6(3):191-214. DOI: 10.1023/a:1008862904946. View

3.
Brown J, Bullock D, Grossberg S . How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. J Neurosci. 1999; 19(23):10502-11. PMC: 6782432. View

4.
Horvitz J . Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience. 2000; 96(4):651-6. DOI: 10.1016/s0306-4522(00)00019-1. View

5.
Martin S, Grimwood P, Morris R . Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000; 23:649-711. DOI: 10.1146/annurev.neuro.23.1.649. View