» Articles » PMID: 34045706

Genome Structural Evolution in Brassica Crops

Abstract

The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids.

Citing Articles

Systematic identification of R2R3-MYB S6 subfamily genes in Brassicaceae and its role in anthocyanin biosynthesis in Brassica crops.

Chen D, Wang C, Liu Y, Shen W, Cuimu Q, Zhang D BMC Plant Biol. 2025; 25(1):290.

PMID: 40045187 PMC: 11883967. DOI: 10.1186/s12870-025-06296-1.


DNA methylation dynamics in male germline development in Brassica Rapa.

Zhang J, Wu D, Zhang Y, Feng X, Gao H Mol Hortic. 2025; 5(1):16.

PMID: 40033451 PMC: 11877836. DOI: 10.1186/s43897-024-00137-9.


Constructing a Novel Disease Resistance Mechanism Model for Cruciferous Crops: An Example From Black Rot.

Dai H, Hu L, Wang J, Yue Z, Wang J, Chen T Mol Plant Pathol. 2025; 26(2):e70060.

PMID: 39924905 PMC: 11808048. DOI: 10.1111/mpp.70060.


The developments and prospects of plant super-pangenomes: Demands, approaches, and applications.

He W, Li X, Qian Q, Shang L Plant Commun. 2024; 6(2):101230.

PMID: 39722458 PMC: 11897476. DOI: 10.1016/j.xplc.2024.101230.


Brassica Panache: A multi-species graph pangenome representing presence absence variation across forty-one Brassica genomes.

MacNish T, Al-Mamun H, Bayer P, McPhan C, Fernandez C, Upadhyaya S Plant Genome. 2024; 18(1):e20535.

PMID: 39648684 PMC: 11730171. DOI: 10.1002/tpg2.20535.


References
1.
Murat F, Louis A, Maumus F, Armero A, Cooke R, Quesneville H . Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 2015; 16:262. PMC: 4675067. DOI: 10.1186/s13059-015-0814-y. View

2.
Wang X, Wang H, Sun R, Wu J, Liu S, Bai Y . The genome of the mesopolyploid crop species Brassica rapa. Nat Genet. 2011; 43(10):1035-9. DOI: 10.1038/ng.919. View

3.
Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I . The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. 2014; 5:3930. PMC: 4279128. DOI: 10.1038/ncomms4930. View

4.
Parkin I, Koh C, Tang H, Robinson S, Kagale S, Clarke W . Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014; 15(6):R77. PMC: 4097860. DOI: 10.1186/gb-2014-15-6-r77. View

5.
Chalhoub B, Denoeud F, Liu S, Parkin I, Tang H, Wang X . Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014; 345(6199):950-3. DOI: 10.1126/science.1253435. View