» Articles » PMID: 21873998

The Genome of the Mesopolyploid Crop Species Brassica Rapa

Overview
Journal Nat Genet
Specialty Genetics
Date 2011 Aug 30
PMID 21873998
Citations 1045
Authors
Affiliations
Soon will be listed here.
Abstract

We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.

Citing Articles

IMA GENOME - F20 A draft genome assembly of , , , , and genomic resources for and .

DAngelo D, Sorrentino R, Nkomo T, Zhou X, Vaghefi N, Sonnekus B IMA Fungus. 2025; 16:e141732.

PMID: 40052082 PMC: 11882029. DOI: 10.3897/imafungus.16.141732.


Systematic identification of R2R3-MYB S6 subfamily genes in Brassicaceae and its role in anthocyanin biosynthesis in Brassica crops.

Chen D, Wang C, Liu Y, Shen W, Cuimu Q, Zhang D BMC Plant Biol. 2025; 25(1):290.

PMID: 40045187 PMC: 11883967. DOI: 10.1186/s12870-025-06296-1.


Divergent evolutionary paces among eudicot plants revealed by simultaneously duplicated genes produced billions of years ago.

Wang Y, Wang J, Li Y, Jin Y, Wang X Front Plant Sci. 2025; 16:1518981.

PMID: 40041022 PMC: 11876125. DOI: 10.3389/fpls.2025.1518981.


Genome-wide identification, characterization and expression analysis of the chalcone synthase gene family in Chinese cabbage.

Xie Z, Yang L, Fan M, Xuan S, Jia X, Zhang Z BMC Genomics. 2025; 26(1):168.

PMID: 39979840 PMC: 11841018. DOI: 10.1186/s12864-025-11334-1.


The WRKY28-BRC1 Transcription Factor Module Controls Shoot Branching in .

Zhang K, Zhang J, Cui C, Chai L, Zheng B, Jiang L Plants (Basel). 2025; 14(3).

PMID: 39943050 PMC: 11820759. DOI: 10.3390/plants14030486.


References
1.
Jaillon O, Aury J, Noel B, Policriti A, Clepet C, Casagrande A . The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007; 449(7161):463-7. DOI: 10.1038/nature06148. View

2.
ONeill C, Bancroft I . Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 2000; 23(2):233-43. DOI: 10.1046/j.1365-313x.2000.00781.x. View

3.
Paterson A, Bowers J, Bruggmann R, Dubchak I, Grimwood J, Gundlach H . The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457(7229):551-6. DOI: 10.1038/nature07723. View

4.
Birney E, Clamp M, Durbin R . GeneWise and Genomewise. Genome Res. 2004; 14(5):988-95. PMC: 479130. DOI: 10.1101/gr.1865504. View

5.
Yang Y, Lai K, Tai P, Li W . Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol. 1999; 48(5):597-604. DOI: 10.1007/pl00006502. View