» Articles » PMID: 33926963

Structure and Activity of SLAC1 Channels for Stomatal Signaling in Leaves

Overview
Specialty Science
Date 2021 Apr 30
PMID 33926963
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of SLAC1 (SLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of SLAC1 (SLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in SLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in SLAC1 for regulatory interaction with the N-terminal extension. This SLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.

Citing Articles

Rice Responses to Abiotic Stress: Key Proteins and Molecular Mechanisms.

Wang X, Liu X, Su Y, Shen H Int J Mol Sci. 2025; 26(3).

PMID: 39940666 PMC: 11817427. DOI: 10.3390/ijms26030896.


Hyperosmolarity-induced suppression of group B1 Raf-like protein kinases modulates drought-growth trade-off in .

Kamiyama Y, Katagiri S, Li Y, Yamashita K, Takase H, Umezawa T Proc Natl Acad Sci U S A. 2024; 121(52):e2419204121.

PMID: 39700143 PMC: 11670097. DOI: 10.1073/pnas.2419204121.


Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of quinoa salt bladders.

Liu H, Liu Z, Zhou Y, Qin A, Li C, Liu Y Stress Biol. 2024; 4(1):47.

PMID: 39532803 PMC: 11557854. DOI: 10.1007/s44154-024-00189-3.


Gaining or cutting SLAC: the evolution of plant guard cell signalling pathways.

Sussmilch F, Maierhofer T, Herrmann J, Voss L, Lind C, Messerer M New Phytol. 2024; 244(6):2295-2310.

PMID: 39370767 PMC: 11579433. DOI: 10.1111/nph.20172.


Mechanistic insights into phosphoactivation of SLAC1 in guard cell signaling.

Qin L, Deng Y, Zhang X, Tang L, Zhang C, Xu S Proc Natl Acad Sci U S A. 2024; 121(29):e2323040121.

PMID: 38985761 PMC: 11260165. DOI: 10.1073/pnas.2323040121.


References
1.
Zhang Z, Liu F, Chen J . Conformational Changes of CFTR upon Phosphorylation and ATP Binding. Cell. 2017; 170(3):483-491.e8. DOI: 10.1016/j.cell.2017.06.041. View

2.
Pandey S, Zhang W, Assmann S . Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett. 2007; 581(12):2325-36. DOI: 10.1016/j.febslet.2007.04.008. View

3.
Parker J, Newstead S . Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature. 2014; 507(7490):68-72. PMC: 3982047. DOI: 10.1038/nature13116. View

4.
Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S . In vitro reconstitution of an abscisic acid signalling pathway. Nature. 2009; 462(7273):660-4. PMC: 2803041. DOI: 10.1038/nature08599. View

5.
Hedrich R, Geiger D . Biology of SLAC1-type anion channels - from nutrient uptake to stomatal closure. New Phytol. 2017; 216(1):46-61. DOI: 10.1111/nph.14685. View