» Articles » PMID: 18084014

Disruption of a Gene Encoding C4-dicarboxylate Transporter-like Protein Increases Ozone Sensitivity Through Deregulation of the Stomatal Response in Arabidopsis Thaliana

Overview
Specialties Biology
Cell Biology
Date 2007 Dec 18
PMID 18084014
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

To understand better the plant response to ozone, we isolated and characterized an ozone-sensitive (ozs1) mutant strain from a set of T-DNA-tagged Arabidopsis thaliana ecotype Columbia. The mutant plants show enhanced sensitivity to ozone, desiccation and sulfur dioxide, but have normal sensitivity to hydrogen peroxide, low temperature and high light levels. The T-DNA was inserted at a single locus which is linked to ozone sensitivity. Identification of the genomic sequences flanking the T-DNA insertion revealed disruption of a gene encoding a transporter-like protein of the tellurite resistance/C(4)-dicarboxylate transporter family. Plants with either of two different T-DNA insertions in this gene were also sensitive to ozone, and these plants failed to complement ozs1. Transpiration levels, stomatal conductance levels and the size of stomatal apertures were greater in ozs1 mutant plants than in the wild type. The stomatal apertures of ozs1 mutant plants responded to light fluctuations but were always larger than those of the wild-type plants under the same conditions. The stomata of the mutant and wild-type plants responded similarly to stimuli such as light, abscisic acid, high concentrations of carbon dioxide and ozone. These results suggest that OZS1 helps to close stomata, being not involved in the responses to these signals.

Citing Articles

Phytocyanin-encoding genes confer enhanced ozone tolerance in Arabidopsis thaliana.

Saji S, Saji H, Sage-Ono K, Ono M, Nakajima N, Aono M Sci Rep. 2022; 12(1):21204.

PMID: 36550187 PMC: 9780206. DOI: 10.1038/s41598-022-25706-0.


Cryo-EM structure and electrophysiological characterization of ALMT from reveal a previously uncharacterized class of anion channels.

Qin L, Tang L, Xu J, Zhang X, Zhu Y, Zhang C Sci Adv. 2022; 8(9):eabm3238.

PMID: 35235352 PMC: 8890709. DOI: 10.1126/sciadv.abm3238.


Structure and activity of SLAC1 channels for stomatal signaling in leaves.

Deng Y, Kashtoh H, Wang Q, Zhen G, Li Q, Tang L Proc Natl Acad Sci U S A. 2021; 118(18).

PMID: 33926963 PMC: 8106318. DOI: 10.1073/pnas.2015151118.


Two Clade A Phosphatase 2Cs Expressed in Guard Cells Physically Interact With Abscisic Acid Signaling Components to Induce Stomatal Closure in Rice.

Min M, Choi E, Kim J, Yoon I, Han S, Lee Y Rice (N Y). 2019; 12(1):37.

PMID: 31134357 PMC: 6536566. DOI: 10.1186/s12284-019-0297-7.


Involvement of S-type anion channels in disease resistance against an oomycete pathogen in Arabidopsis seedlings.

Kurusu T, Mitsuka D, Yagi C, Kitahata N, Tsutsui T, Ueda T Commun Integr Biol. 2018; 11(3):1-6.

PMID: 30214673 PMC: 6132426. DOI: 10.1080/19420889.2018.1495007.