» Articles » PMID: 33904240

Targeting SARS-CoV-2 Spike Protein/ACE2 Protein-Protein Interactions: a Computational Study

Overview
Journal Mol Inform
Date 2021 Apr 27
PMID 33904240
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The spike glycoprotein (S) of the SARS-CoV-2 virus surface plays a key role in receptor binding and virus entry. The S protein uses the angiotensin converting enzyme (ACE2) for entry into the host cell and binding to ACE2 occurs at the receptor binding domain (RBD) of the S protein. Therefore, the protein-protein interactions (PPIs) between the SARS-CoV-2 RBD and human ACE2, could be attractive therapeutic targets for drug discovery approaches designed to inhibit the entry of SARS-CoV-2 into the host cells. Herein, with the support of machine learning approaches, we report structure-based virtual screening as an effective strategy to discover PPIs inhibitors from ZINC database. The proposed computational protocol led to the identification of a promising scaffold which was selected for subsequent binding mode analysis and that can represent a useful starting point for the development of new treatments of the SARS-CoV-2 infection.

Citing Articles

Identification of Covalent Cyclic Peptide Inhibitors Targeting Protein-Protein Interactions Using Phage Display.

Wang S, Faucher F, Bertolini M, Kim H, Yu B, Cao L bioRxiv. 2024; .

PMID: 39574763 PMC: 11580984. DOI: 10.1101/2024.11.08.622749.


Recent advances in chemometric modelling of inhibitors against SARS-CoV-2.

Wang Q, Lu X, Jia R, Yan X, Wang J, Zhao L Heliyon. 2024; 10(2):e24209.

PMID: 38293468 PMC: 10826659. DOI: 10.1016/j.heliyon.2024.e24209.


Virtual screening and molecular dynamics simulations provide insight into repurposing drugs against SARS-CoV-2 variants Spike protein/ACE2 interface.

Pirolli D, Righino B, Camponeschi C, Ria F, Di Sante G, De Rosa M Sci Rep. 2023; 13(1):1494.

PMID: 36707679 PMC: 9880937. DOI: 10.1038/s41598-023-28716-8.


Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.

Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y Chem Rev. 2022; 122(13):11287-11368.

PMID: 35594413 PMC: 9159519. DOI: 10.1021/acs.chemrev.1c00965.


Artificial Intelligence Technologies for COVID-19 De Novo Drug Design.

Floresta G, Zagni C, Gentile D, Patamia V, Rescifina A Int J Mol Sci. 2022; 23(6).

PMID: 35328682 PMC: 8949797. DOI: 10.3390/ijms23063261.


References
1.
Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W . A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-273. PMC: 7095418. DOI: 10.1038/s41586-020-2012-7. View

2.
Halgren T . Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model. 2009; 49(2):377-89. DOI: 10.1021/ci800324m. View

3.
Panda P, Arul M, Patel P, Verma S, Luo W, Rubahn H . Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci Adv. 2020; 6(28):eabb8097. PMC: 7319274. DOI: 10.1126/sciadv.abb8097. View

4.
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J . A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382(8):727-733. PMC: 7092803. DOI: 10.1056/NEJMoa2001017. View

5.
Friesner R, Murphy R, Repasky M, Frye L, Greenwood J, Halgren T . Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006; 49(21):6177-96. DOI: 10.1021/jm051256o. View