» Articles » PMID: 22716043

Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking

Overview
Journal J Med Chem
Specialty Chemistry
Date 2012 Jun 22
PMID 22716043
Citations 767
Authors
Affiliations
Soon will be listed here.
Abstract

A key metric to assess molecular docking remains ligand enrichment against challenging decoys. Whereas the directory of useful decoys (DUD) has been widely used, clear areas for optimization have emerged. Here we describe an improved benchmarking set that includes more diverse targets such as GPCRs and ion channels, totaling 102 proteins with 22886 clustered ligands drawn from ChEMBL, each with 50 property-matched decoys drawn from ZINC. To ensure chemotype diversity, we cluster each target's ligands by their Bemis-Murcko atomic frameworks. We add net charge to the matched physicochemical properties and include only the most dissimilar decoys, by topology, from the ligands. An online automated tool (http://decoys.docking.org) generates these improved matched decoys for user-supplied ligands. We test this data set by docking all 102 targets, using the results to improve the balance between ligand desolvation and electrostatics in DOCK 3.6. The complete DUD-E benchmarking set is freely available at http://dude.docking.org.

Citing Articles

Therapeutic Mechanisms of Medicine Food Homology Plants in Alzheimer's Disease: Insights from Network Pharmacology, Machine Learning, and Molecular Docking.

Wen S, Han Y, Li Y, Zhan D Int J Mol Sci. 2025; 26(5).

PMID: 40076742 PMC: 11899993. DOI: 10.3390/ijms26052121.


DockEM: an enhanced method for atomic-scale protein-ligand docking refinement leveraging low-to-medium resolution cryo-EM density maps.

Zou J, Zhang W, Hu J, Zhou X, Zhang B Brief Bioinform. 2025; 26(2).

PMID: 40062618 PMC: 11891657. DOI: 10.1093/bib/bbaf091.


A database for large-scale docking and experimental results.

Hall B, Tummino T, Tang K, Irwin J, Shoichet B bioRxiv. 2025; .

PMID: 40060496 PMC: 11888352. DOI: 10.1101/2025.02.25.639879.


Knowledge-guided diffusion model for 3D ligand-pharmacophore mapping.

Yu J, Zhou C, Ning X, Mou J, Meng F, Wu J Nat Commun. 2025; 16(1):2269.

PMID: 40050649 PMC: 11885826. DOI: 10.1038/s41467-025-57485-3.


LeScore: a scoring function incorporating hydrogen bonding penalty for protein-ligand docking.

Xie A, Zhao G, Liang H, Gao T, Gao X, Hou N J Mol Model. 2025; 31(4):106.

PMID: 40029439 DOI: 10.1007/s00894-025-06328-5.


References
1.
Hawkins P, Warren G, Skillman A, Nicholls A . How to do an evaluation: pitfalls and traps. J Comput Aided Mol Des. 2008; 22(3-4):179-90. PMC: 2270916. DOI: 10.1007/s10822-007-9166-3. View

2.
Mysinger M, Shoichet B . Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model. 2010; 50(9):1561-73. DOI: 10.1021/ci100214a. View

3.
Carlsson J, Yoo L, Gao Z, Irwin J, Shoichet B, Jacobson K . Structure-based discovery of A2A adenosine receptor ligands. J Med Chem. 2010; 53(9):3748-55. PMC: 2865168. DOI: 10.1021/jm100240h. View

4.
Enyedy I, Egan W . Can we use docking and scoring for hit-to-lead optimization?. J Comput Aided Mol Des. 2008; 22(3-4):161-8. DOI: 10.1007/s10822-007-9165-4. View

5.
Verdonk M, Berdini V, Hartshorn M, Mooij W, Murray C, Taylor R . Virtual screening using protein-ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci. 2004; 44(3):793-806. DOI: 10.1021/ci034289q. View