» Articles » PMID: 33897412

Challenges and Limitations of Targeting the Keap1-Nrf2 Pathway for Neurotherapeutics: Bach1 De-Repression to the Rescue

Overview
Specialty Geriatrics
Date 2021 Apr 26
PMID 33897412
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The Keap1-Nrf2 signaling axis is a validated and promising target for cellular defense and survival pathways. This minireview discusses the potential off-target effects and their impact on future drug development originating from Keap1-targeting small molecules that function as displacement activators of the redox-sensitive transcription factor Nrf2. We argue that small-molecule displacement activators, similarly to electrophiles, will release both Nrf2 and other Keap1 client proteins from the ubiquitin ligase complex. This non-specificity is likely unavoidable and may result in off-target effects during Nrf2 activation by targeting Keap1. The small molecule displacement activators may also target Kelch domains in proteins other than Keap1, causing additional off-target effects unless designed to ensure specificity for the Kelch domain only in Keap1. A potentially promising and alternative therapeutic approach to overcome this non-specificity emerging from targeting Keap1 is to inhibit the Nrf2 repressor Bach1 for constitutive activation of the Nrf2 pathway and bypass the Keap1-Nrf2 complex.

Citing Articles

The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications.

Wei X, He Y, Yu Y, Tang S, Liu R, Guo J Adv Sci (Weinh). 2025; 12(10):e2412850.

PMID: 39887888 PMC: 11905017. DOI: 10.1002/advs.202412850.


Role of NRF2 in Pathogenesis of Alzheimer's Disease.

Chu C, Uruno A, Katsuoka F, Yamamoto M Antioxidants (Basel). 2025; 13(12.

PMID: 39765857 PMC: 11727090. DOI: 10.3390/antiox13121529.


Targeting the NRF2 pathway for disease modification in neurodegenerative diseases: mechanisms and therapeutic implications.

Mayer C, Riera-Ponsati L, Kauppinen S, Klitgaard H, Erler J, Hansen S Front Pharmacol. 2024; 15:1437939.

PMID: 39119604 PMC: 11306042. DOI: 10.3389/fphar.2024.1437939.


Glutathione dynamics in subcellular compartments and implications for drug development.

Lin H, Wang L, Jiang X, Wang J Curr Opin Chem Biol. 2024; 81():102505.

PMID: 39053236 PMC: 11722958. DOI: 10.1016/j.cbpa.2024.102505.


Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases.

Xiang Y, Song X, Long D Arch Toxicol. 2024; 98(3):579-615.

PMID: 38265475 PMC: 10861688. DOI: 10.1007/s00204-023-03660-8.


References
1.
Suzuki T, Muramatsu A, Saito R, Iso T, Shibata T, Kuwata K . Molecular Mechanism of Cellular Oxidative Stress Sensing by Keap1. Cell Rep. 2019; 28(3):746-758.e4. DOI: 10.1016/j.celrep.2019.06.047. View

2.
Harder B, Jiang T, Wu T, Tao S, Rojo de la Vega M, Tian W . Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans. 2015; 43(4):680-6. PMC: 4613518. DOI: 10.1042/BST20150020. View

3.
Kopacz A, Kloska D, Forman H, Jozkowicz A, Grochot-Przeczek A . Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med. 2020; 157:63-74. PMC: 7732858. DOI: 10.1016/j.freeradbiomed.2020.03.023. View

4.
Abramic M, Vitale L . Basic amino acids preferring broad specificity aminopeptidase from human erythrocytes. Biol Chem Hoppe Seyler. 1992; 373(7):375-80. DOI: 10.1515/bchm3.1992.373.2.375. View

5.
Hast B, Goldfarb D, Mulvaney K, Hast M, Siesser P, Yan F . Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res. 2013; 73(7):2199-210. PMC: 3618590. DOI: 10.1158/0008-5472.CAN-12-4400. View