» Articles » PMID: 26551712

Molecular Mechanisms of Nrf2 Regulation and How These Influence Chemical Modulation for Disease Intervention

Overview
Specialty Biochemistry
Date 2015 Nov 10
PMID 26551712
Citations 76
Authors
Affiliations
Soon will be listed here.
Abstract

Nrf2 (nuclear factor erytheroid-derived-2-like 2) transcriptional programmes are activated by a variety of cellular stress conditions to maintain cellular homoeostasis. Under non-stress conditions, Nrf2 is under tight regulation by the ubiquitin proteasome system (UPS). Detailed mechanistic investigations have shown the Kelch-like ECH-associated protein 1 (Keap1)-cullin3 (Cul3)-ring-box1 (Rbx1) E3-ligase to be the primary Nrf2 regulatory system. Recently, both beta-transducin repeat-containing E3 ubiquitin protein ligase (β-TrCP) and E3 ubiquitin-protein ligase synoviolin (Hrd1) have been identified as novel E3 ubiquitin ligases that negatively regulate Nrf2 through Keap1-independent mechanisms. In addition to UPS-mediated regulation of Nrf2, investigations have revealed a cross-talk between Nrf2 and the autophagic pathway resulting in activation of Nrf2 in a non-canonical manner. In addition to regulation at the protein level, Nrf2 was recently shown to be regulated at the transcriptional level by oncogenic K-rat sarcoma (Ras). A consequence of these differential regulatory mechanisms is the dual role of Nrf2 in cancer: the canonical, protective role and the non-canonical 'dark-side' of Nrf2. Based on the protective role of Nrf2, a vast effort has been dedicated towards identifying novel chemical inducers of Nrf2 for the purpose of chemoprevention. On the other hand, upon malignant transformation, some cancer cells have a constitutively high level of Nrf2 offering a growth advantage, as well as rendering cancer cells resistant to chemotherapeutics. This discovery has led to a new paradigm in cancer treatment; the initially counterintuitive use of Nrf2 inhibitors as adjuvants in chemotherapy. Herein, we will discuss the mechanisms of Nrf2 regulation and how this detailed molecular understanding can be leveraged to develop Nrf2 modulators to prevent diseases, mitigate disease progression or overcome chemoresistance.

Citing Articles

Water Extract Inhibits Melanin Synthesis and Promotes Wound Healing.

Sato K, Hiraga Y, Yamaguchi Y, Sakaki S, Takenaka H Life (Basel). 2025; 14(12.

PMID: 39768251 PMC: 11677664. DOI: 10.3390/life14121542.


Transcription factor NF-E2-related factor 2 plays a critical role in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) by regulating ferroptosis.

Deng J, Li N, Hao L, Li S, Aiyu N, Zhang J PeerJ. 2024; 12:e17692.

PMID: 39670103 PMC: 11637007. DOI: 10.7717/peerj.17692.


Protective Role of Cepharanthine Against Equid Herpesvirus Type 8 Through AMPK and Nrf2/HO-1 Pathway Activation.

Li S, Li L, Sun Y, Khan M, Yu Y, Ruan L Viruses. 2024; 16(11).

PMID: 39599879 PMC: 11598968. DOI: 10.3390/v16111765.


Isoliquiritigenin as a modulator of the Nrf2 signaling pathway: potential therapeutic implications.

Qiu M, Ma K, Zhang J, Zhao Z, Wang S, Wang Q Front Pharmacol. 2024; 15:1395735.

PMID: 39444605 PMC: 11496173. DOI: 10.3389/fphar.2024.1395735.


Human-augmented large language model-driven selection of glutathione peroxidase 4 as a candidate blood transcriptional biomarker for circulating erythroid cells.

Subba B, Toufiq M, Omi F, Yurieva M, Khan T, Rinchai D Sci Rep. 2024; 14(1):23225.

PMID: 39369090 PMC: 11455862. DOI: 10.1038/s41598-024-73916-5.


References
1.
Yates M, Kwak M, Egner P, Groopman J, Bodreddigari S, Sutter T . Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. Cancer Res. 2006; 66(4):2488-94. DOI: 10.1158/0008-5472.CAN-05-3823. View

2.
Lau A, Wang X, Zhao F, Villeneuve N, Wu T, Jiang T . A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol. 2010; 30(13):3275-85. PMC: 2897585. DOI: 10.1128/MCB.00248-10. View

3.
Baird L, Lleres D, Swift S, Dinkova-Kostova A . Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc Natl Acad Sci U S A. 2013; 110(38):15259-64. PMC: 3780858. DOI: 10.1073/pnas.1305687110. View

4.
Wang X, Sun Z, Villeneuve N, Zhang S, Zhao F, Li Y . Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis. 2008; 29(6):1235-43. PMC: 3312612. DOI: 10.1093/carcin/bgn095. View

5.
Wu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T . Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 2014; 28(7):708-22. PMC: 4015486. DOI: 10.1101/gad.238246.114. View