» Articles » PMID: 33875229

The Importance of Apparent PKa in the Development of Nanoparticles Encapsulating SiRNA and MRNA

Overview
Specialty Pharmacology
Date 2021 Apr 20
PMID 33875229
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Polymer and lipid nanoparticles have been extensively used as carriers to address the biological barriers encountered in siRNA and mRNA delivery. We summarize the crucial role of nanoparticle charge and ionizability in complexing RNAs, binding to biological components, escaping from the endosome, and releasing RNAs into the cytoplasm. We highlight the significant impact of the apparent pKa of nanoparticles on their efficacy and toxicity, and the importance of optimizing pKa in the development of lead formulations for RNAs. We also discuss the feasibility of fine-tuning the pKa in nanoparticles and the applications of this approach in the optimization of delivery systems for RNAs.

Citing Articles

Advances and prospects of RNA delivery nanoplatforms for cancer therapy.

Attia M, Kijanka G, Nguyen N, Zhang J, An H Acta Pharm Sin B. 2025; 15(1):52-96.

PMID: 40041887 PMC: 11873661. DOI: 10.1016/j.apsb.2024.09.009.


Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides.

Ding H, Zhou H, Jiang Y, Chen S, Wu X, Li Y Drug Des Devel Ther. 2025; 19:1001-1023.

PMID: 39967902 PMC: 11834698. DOI: 10.2147/DDDT.S507402.


Ionizable Lipids with Optimized Linkers Enable Lung-Specific, Lipid Nanoparticle-Mediated mRNA Delivery for Treatment of Metastatic Lung Tumors.

Somu Naidu G, Rampado R, Sharma P, Ezra A, Kundoor G, Breier D ACS Nano. 2025; 19(6):6571-6587.

PMID: 39912611 PMC: 11841047. DOI: 10.1021/acsnano.4c18636.


Rational design and modular synthesis of biodegradable ionizable lipids via the Passerini reaction for mRNA delivery.

Xu Y, Gong F, Golubovic A, Strilchuk A, Chen J, Zhou M Proc Natl Acad Sci U S A. 2025; 122(5):e2409572122.

PMID: 39883839 PMC: 11804478. DOI: 10.1073/pnas.2409572122.


Advances in the use of nanotechnology for treating gout.

Wang Y, Wang Z, Jiang H, Ni L, Ju H, Wu Y Nanomedicine (Lond). 2025; 20(4):355-369.

PMID: 39873132 PMC: 11812334. DOI: 10.1080/17435889.2025.2457315.


References
1.
Schonherr D, Wollatz U, Haznar-Garbacz D, Hanke U, Box K, Taylor R . Characterisation of selected active agents regarding pKa values, solubility concentrations and pH profiles by SiriusT3. Eur J Pharm Biopharm. 2015; 92:155-70. DOI: 10.1016/j.ejpb.2015.02.028. View

2.
Soliman O, Alameh M, De Cresenzo G, Buschmann M, Lavertu M . Efficiency of Chitosan/Hyaluronan-Based mRNA Delivery Systems In Vitro: Influence of Composition and Structure. J Pharm Sci. 2020; 109(4):1581-1593. DOI: 10.1016/j.xphs.2019.12.020. View

3.
Kaczmarek J, Kowalski P, Anderson D . Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 2017; 9(1):60. PMC: 5485616. DOI: 10.1186/s13073-017-0450-0. View

4.
Sato Y, Hatakeyama H, Hyodo M, Harashima H . Relationship Between the Physicochemical Properties of Lipid Nanoparticles and the Quality of siRNA Delivery to Liver Cells. Mol Ther. 2015; 24(4):788-95. PMC: 4886930. DOI: 10.1038/mt.2015.222. View

5.
Ramezanpour M, Schmidt M, Bodnariuc I, Kulkarni J, Leung S, Cullis P . Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function. Nanoscale. 2019; 11(30):14141-14146. DOI: 10.1039/c9nr02297j. View