» Articles » PMID: 33854896

Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management

Abstract

Graphene is usually embedded into polymer matrices for the development of thermally conductive composites, preferably forming an interconnected and anisotropic framework. Currently, the directional self-assembly of exfoliated graphene sheets is demonstrated to be the most effective way to synthesize anisotropic graphene frameworks. However, achieving a thermal conductivity enhancement (TCE) over 1500% with per 1 vol% graphene content in polymer matrices remains challenging, due to the high junction thermal resistance between the adjacent graphene sheets within the self-assembled graphene framework. Here, a multiscale structural modulation strategy for obtaining highly ordered structure of graphene framework and simultaneously reducing the junction thermal resistance is demonstrated. The resultant anisotropic framework contributes to the polymer composites with a record-high thermal conductivity of 56.8-62.4 W m K at the graphene loading of ≈13.3 vol%, giving an ultrahigh TCE per 1 vol% graphene over 2400%. Furthermore, thermal energy management applications of the composites as phase change materials for solar-thermal energy conversion and as thermal interface materials for electronic device cooling are demonstrated. The finding provides valuable guidance for designing high-performance thermally conductive composites and raises their possibility for practical use in thermal energy storage and thermal management of electronics.

Citing Articles

"Brick-Mortar-Binder" Design toward Highly Elastic, Hydrophobic, and Flame-Retardant Thermal Insulator.

Sui S, Quan H, Wang J, Lu Y, Yang Y, Sheng Y Adv Sci (Weinh). 2024; 12(4):e2410938.

PMID: 39611399 PMC: 11775557. DOI: 10.1002/advs.202410938.


Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction.

Yu H, Peng L, Chen C, Qin M, Feng W Nanomicro Lett. 2024; 16(1):198.

PMID: 38758464 PMC: 11101387. DOI: 10.1007/s40820-024-01426-0.


Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy.

Liu Y, Zou W, Zhao N, Xu J Nat Commun. 2023; 14(1):5342.

PMID: 37660170 PMC: 10475028. DOI: 10.1038/s41467-023-40707-x.


Enhanced Thermal Pad Composites Using Densely Aligned MgO Nanowires.

Song K, Choi J, Cho D, Lee I, Ahn C Materials (Basel). 2023; 16(14).

PMID: 37512377 PMC: 10386388. DOI: 10.3390/ma16145102.


Tetris-Style Stacking Process to Tailor the Orientation of Carbon Fiber Scaffolds for Efficient Heat Dissipation.

Han S, Ji Y, Zhang Q, Wu H, Guo S, Qiu J Nanomicro Lett. 2023; 15(1):146.

PMID: 37286799 PMC: 10247643. DOI: 10.1007/s40820-023-01119-0.


References
1.
Hu J, Huang Y, Yao Y, Pan G, Sun J, Zeng X . Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN. ACS Appl Mater Interfaces. 2017; 9(15):13544-13553. DOI: 10.1021/acsami.7b02410. View

2.
Waldrop M . The chips are down for Moore's law. Nature. 2016; 530(7589):144-7. DOI: 10.1038/530144a. View

3.
Jung H, Padmajan Sasikala S, Lee K, Hwang H, Yun T, Kim I . Self-Planarization of High-Performance Graphene Liquid Crystalline Fibers by Hydration. ACS Cent Sci. 2020; 6(7):1105-1114. PMC: 7379094. DOI: 10.1021/acscentsci.0c00467. View

4.
Song S, Park K, Kim B, Choi Y, Jun G, Lee D . Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater. 2012; 25(5):732-7. DOI: 10.1002/adma.201202736. View

5.
Balandin A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F . Superior thermal conductivity of single-layer graphene. Nano Lett. 2008; 8(3):902-7. DOI: 10.1021/nl0731872. View