6.
Dai W, Lv L, Ma T, Wang X, Ying J, Yan Q
. Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management. Adv Sci (Weinh). 2021; 8(7):2003734.
PMC: 8025029.
DOI: 10.1002/advs.202003734.
View
7.
Yu S, Shen X, Kim J
. Beyond homogeneous dispersion: oriented conductive fillers for high nanocomposites. Mater Horiz. 2021; 8(11):3009-3042.
DOI: 10.1039/d1mh00907a.
View
8.
Zhou X, Xu S, Wang Z, Hao L, Shi Z, Zhao J
. Wood-Derived, Vertically Aligned, and Densely Interconnected 3D SiC Frameworks for Anisotropically Highly Thermoconductive Polymer Composites. Adv Sci (Weinh). 2022; 9(7):e2103592.
PMC: 8895159.
DOI: 10.1002/advs.202103592.
View
9.
He H, Peng W, Liu J, Chan X, Liu S, Lu L
. Microstructured BN Composites with Internally Designed High Thermal Conductivity Paths for 3D Electronic Packaging. Adv Mater. 2022; 34(38):e2205120.
DOI: 10.1002/adma.202205120.
View
10.
Guo C, He L, Yao Y, Lin W, Zhang Y, Zhang Q
. Bifunctional Liquid Metals Allow Electrical Insulating Phase Change Materials to Dual-Mode Thermal Manage the Li-Ion Batteries. Nanomicro Lett. 2022; 14(1):202.
PMC: 9551009.
DOI: 10.1007/s40820-022-00947-w.
View
11.
Uetani K, Ata S, Tomonoh S, Yamada T, Yumura M, Hata K
. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv Mater. 2014; 26(33):5857-62.
DOI: 10.1002/adma.201401736.
View
12.
Ying J, Tan X, Lv L, Wang X, Gao J, Yan Q
. Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates. ACS Nano. 2021; 15(8):12922-12934.
DOI: 10.1021/acsnano.1c01332.
View
13.
Yao Y, Ye Z, Huang F, Zeng X, Zhang T, Shang T
. Achieving Significant Thermal Conductivity Enhancement via an Ice-Templated and Sintered BN-SiC Skeleton. ACS Appl Mater Interfaces. 2019; 12(2):2892-2902.
DOI: 10.1021/acsami.9b19280.
View
14.
Liu P, Li X, Min P, Chang X, Shu C, Ding Y
. 3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness. Nanomicro Lett. 2021; 13(1):22.
PMC: 8187529.
DOI: 10.1007/s40820-020-00548-5.
View
15.
Han Y, Ruan K, Gu J
. Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@Boron Nitride Nanosheets and Aramid Nanofibers. Angew Chem Int Ed Engl. 2022; 62(5):e202216093.
DOI: 10.1002/anie.202216093.
View
16.
Zhang X, Zhang J, Xia L, Li C, Wang J, Xu F
. Simple and Consecutive Melt Extrusion Method to Fabricate Thermally Conductive Composites with Highly Oriented Boron Nitrides. ACS Appl Mater Interfaces. 2017; 9(27):22977-22984.
DOI: 10.1021/acsami.7b05866.
View
17.
Yu H, Chen C, Sun J, Zhang H, Feng Y, Qin M
. Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity. Nanomicro Lett. 2022; 14(1):135.
PMC: 9200911.
DOI: 10.1007/s40820-022-00882-w.
View
18.
Tanimoto M, Yamagata T, Miyata K, Ando S
. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity. ACS Appl Mater Interfaces. 2013; 5(10):4374-82.
DOI: 10.1021/am400615z.
View
19.
Cui Y, Qin Z, Wu H, Li M, Hu Y
. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat Commun. 2021; 12(1):1284.
PMC: 7904764.
DOI: 10.1038/s41467-021-21531-7.
View
20.
Wu Q, Miao J, Li W, Yang Q, Huang Y, Fu Z
. High-Performance Thermal Interface Materials with Magnetic Aligned Carbon Fibers. Materials (Basel). 2022; 15(3).
PMC: 8836848.
DOI: 10.3390/ma15030735.
View