» Articles » PMID: 33841912

Alternate Primers for Whole-genome SARS-CoV-2 Sequencing

Overview
Journal Virus Evol
Date 2021 Apr 12
PMID 33841912
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

As the world is struggling to control the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there is an urgency to develop effective control measures. Essential information is encoded in the virus genome sequence with accurate and complete SARS-CoV-2 sequences essential for tracking the movement and evolution of the virus and for guiding efforts to develop vaccines and antiviral drugs. While there is unprecedented SARS-CoV-2 sequencing efforts globally, approximately 19 to 43 per cent of the genomes generated monthly are gapped, reducing their information content. The current study documents the genome gap frequencies and their positions in the currently available data and provides an alternative primer set and a sequencing scheme to help improve the quality and coverage of the genomes.

Citing Articles

Addressing pandemic-wide systematic errors in the SARS-CoV-2 phylogeny.

Hunt M, Hinrichs A, Anderson D, Karim L, Dearlove B, Knaggs J bioRxiv. 2024; .

PMID: 38746185 PMC: 11092452. DOI: 10.1101/2024.04.29.591666.


Genomic surveillance of SARS-CoV-2 using long-range PCR primers.

Kandel S, Hartzell S, Ingold A, Turner G, Kennedy J, Ussery D Front Microbiol. 2024; 15:1272972.

PMID: 38440140 PMC: 10910555. DOI: 10.3389/fmicb.2024.1272972.


Targeted amplification-based whole genome sequencing of in clinical specimens.

Isabel S, Eshaghi A, Duvvuri V, Gubbay J, Cronin K, Li A Microbiol Spectr. 2023; 12(1):e0297923.

PMID: 38047694 PMC: 10783113. DOI: 10.1128/spectrum.02979-23.


Bioinformatic investigation of discordant sequence data for SARS-CoV-2: insights for robust genomic analysis during pandemic surveillance.

Zufan S, Lau K, Donald A, Hoang T, Foster C, Sikazwe C Microb Genom. 2023; 9(11).

PMID: 38019123 PMC: 10711311. DOI: 10.1099/mgen.0.001146.


Epidemiologic investigation and genetic characterization of canine respiratory coronavirus in the Southeastern United States.

De Luca E, Alvarez-Narvaez S, Baptista R, Maboni G, Blas-Machado U, Sanchez S J Vet Diagn Invest. 2023; 36(1):46-55.

PMID: 37968872 PMC: 10734574. DOI: 10.1177/10406387231213662.


References
1.
Eden J, Rockett R, Carter I, Rahman H, de Ligt J, Hadfield J . An emergent clade of SARS-CoV-2 linked to returned travellers from Iran. Virus Evol. 2020; 6(1):veaa027. PMC: 7147362. DOI: 10.1093/ve/veaa027. View

2.
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y . Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020; 382(13):1199-1207. PMC: 7121484. DOI: 10.1056/NEJMoa2001316. View

3.
Page A, Mather A, Le-Viet T, Meader E, Alikhan N, Kay G . Large-scale sequencing of SARS-CoV-2 genomes from one region allows detailed epidemiology and enables local outbreak management. Microb Genom. 2021; 7(6). PMC: 8461472. DOI: 10.1099/mgen.0.000589. View

4.
Freed N, Vlkova M, Faisal M, Silander O . Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore Rapid Barcoding. Biol Methods Protoc. 2020; 5(1):bpaa014. PMC: 7454405. DOI: 10.1093/biomethods/bpaa014. View

5.
Phan M, Murad S, van der Eijk A, Metselaar H, Hartog H, Harinck F . Genomic sequence of yellow fever virus from a Dutch traveller returning from the Gambia-Senegal region, the Netherlands, November 2018. Euro Surveill. 2019; 24(4). PMC: 6351999. DOI: 10.2807/1560-7917.ES.2019.24.4.1800684. View