6.
Whitney O, Kennedy L, Fan V, Hinkle A, Kantor R, Greenwald H
. Sewage, Salt, Silica, and SARS-CoV-2 (4S): An Economical Kit-Free Method for Direct Capture of SARS-CoV-2 RNA from Wastewater. Environ Sci Technol. 2021; 55(8):4880-4888.
PMC: 8009096.
DOI: 10.1021/acs.est.0c08129.
View
7.
Shu Y, McCauley J
. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017; 22(13).
PMC: 5388101.
DOI: 10.2807/1560-7917.ES.2017.22.13.30494.
View
8.
Trujillo M, Cheung K, Gao A, Hoxie I, Kannoly S, Kubota N
. Protocol for safe, affordable, and reproducible isolation and quantitation of SARS-CoV-2 RNA from wastewater. PLoS One. 2021; 16(9):e0257454.
PMC: 8459947.
DOI: 10.1371/journal.pone.0257454.
View
9.
Starr T, Greaney A, Dingens A, Bloom J
. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep Med. 2021; 2(4):100255.
PMC: 8020059.
DOI: 10.1016/j.xcrm.2021.100255.
View
10.
Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S
. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell. 2020; 182(5):1284-1294.e9.
PMC: 7366990.
DOI: 10.1016/j.cell.2020.07.012.
View
11.
Lin X, Glier M, Kuchinski K, Ross-Van Mierlo T, McVea D, Tyson J
. Assessing Multiplex Tiling PCR Sequencing Approaches for Detecting Genomic Variants of SARS-CoV-2 in Municipal Wastewater. mSystems. 2021; 6(5):e0106821.
PMC: 8525555.
DOI: 10.1128/mSystems.01068-21.
View
12.
Callaway E
. Beyond Omicron: what's next for COVID's viral evolution. Nature. 2021; 600(7888):204-207.
DOI: 10.1038/d41586-021-03619-8.
View
13.
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S
. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581(7807):215-220.
DOI: 10.1038/s41586-020-2180-5.
View
14.
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi J
. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife. 2020; 9.
PMC: 7723407.
DOI: 10.7554/eLife.61312.
View
15.
Starr T, Greaney A, Addetia A, Hannon W, Choudhary M, Dingens A
. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science. 2021; 371(6531):850-854.
PMC: 7963219.
DOI: 10.1126/science.abf9302.
View
16.
Parasa S, Desai M, Chandrasekar V, Patel H, Kennedy K, Roesch T
. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020; 3(6):e2011335.
PMC: 7290409.
DOI: 10.1001/jamanetworkopen.2020.11335.
View
17.
Gregory D, Wieberg C, Wenzel J, Lin C, Johnson M
. Monitoring SARS-CoV-2 Populations in Wastewater by Amplicon Sequencing and Using the Novel Program SAM Refiner. Viruses. 2021; 13(8).
PMC: 8402658.
DOI: 10.3390/v13081647.
View
18.
Ahmed W, Tscharke B, Bertsch P, Bibby K, Bivins A, Choi P
. SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. Sci Total Environ. 2020; 761:144216.
PMC: 7718102.
DOI: 10.1016/j.scitotenv.2020.144216.
View
19.
Van Poelvoorde L, Delcourt T, Coucke W, Herman P, de Keersmaecker S, Saelens X
. Strategy and Performance Evaluation of Low-Frequency Variant Calling for SARS-CoV-2 Using Targeted Deep Illumina Sequencing. Front Microbiol. 2021; 12:747458.
PMC: 8548777.
DOI: 10.3389/fmicb.2021.747458.
View
20.
Natarajan A, Zlitni S, Brooks E, Vance S, Dahlen A, Hedlin H
. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med. 2022; 3(6):371-387.e9.
PMC: 9005383.
DOI: 10.1016/j.medj.2022.04.001.
View