Cubillos L, Kelberman M, Mender M, Hite A, Temmar H, Willsey M
bioRxiv. 2025; .
PMID: 39975237
PMC: 11838491.
DOI: 10.1101/2025.02.03.636273.
Li B, Xu G, Teng Z, Luo D, Pei J, Chen R
J Neuroeng Rehabil. 2024; 21(1):119.
PMID: 39003459
PMC: 11245770.
DOI: 10.1186/s12984-024-01414-w.
Mazzarini A, Fantozzi M, Papapicco V, Fagioli I, Lanotte F, Baldoni A
Wearable Technol. 2024; 4:e18.
PMID: 38487780
PMC: 10936261.
DOI: 10.1017/wtc.2023.13.
Quraishi H, Shepherd M, McManus L, Harlaar J, Plettenburg D, Rouse E
Wearable Technol. 2024; 2:e9.
PMID: 38486628
PMC: 10936356.
DOI: 10.1017/wtc.2021.7.
Gehlhar R, Tucker M, Young A, Ames A
Annu Rev Control. 2023; 55:142-164.
PMID: 37635763
PMC: 10449377.
DOI: 10.1016/j.arcontrol.2023.03.003.
Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Adaptive Speed and Incline Walking.
Best T, Welker C, Rouse E, Gregg R
IEEE Trans Robot. 2023; 39(3):2151-2169.
PMID: 37304232
PMC: 10249435.
DOI: 10.1109/tro.2022.3226887.
Can a powered knee-ankle prosthesis improve weight-bearing symmetry during stand-to-sit transitions in individuals with above-knee amputations?.
Hunt G, Hood S, Gabert L, Lenzi T
J Neuroeng Rehabil. 2023; 20(1):58.
PMID: 37131231
PMC: 10155411.
DOI: 10.1186/s12984-023-01177-w.
A-Mode Ultrasound-Based Prediction of Transfemoral Amputee Prosthesis Walking Kinematics Via an Artificial Neural Network.
Mendez J, Murray R, Gabert L, Fey N, Liu H, Lenzi T
IEEE Trans Neural Syst Rehabil Eng. 2023; PP.
PMID: 37027646
PMC: 10447627.
DOI: 10.1109/TNSRE.2023.3248647.
Analysis and Validation of Sensitivity in Torque-Sensitive Actuators.
Tran M, Gabert L, Lenzi T
Actuators. 2023; 12(2).
PMID: 37008252
PMC: 10065460.
DOI: 10.3390/act12020080.
A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint.
Tran M, Gabert L, Hood S, Lenzi T
Sci Robot. 2022; 7(72):eabo3996.
PMID: 36417500
PMC: 9894662.
DOI: 10.1126/scirobotics.abo3996.
Powered knee and ankle prostheses enable natural ambulation on level ground and stairs for individuals with bilateral above-knee amputation: a case study.
Hood S, Creveling S, Gabert L, Tran M, Lenzi T
Sci Rep. 2022; 12(1):15465.
PMID: 36104371
PMC: 9474826.
DOI: 10.1038/s41598-022-19701-8.
Powered Knee and Ankle Prosthesis with Adaptive Control Enables Climbing Stairs with Different Stair Heights, Cadences, and Gait Patterns.
Hood S, Gabert L, Lenzi T
IEEE Trans Robot. 2022; 38(3):1430-1441.
PMID: 35686286
PMC: 9175645.
DOI: 10.1109/TRO.2022.3152134.
Stand-Up, Squat, Lunge, and Walk With a Robotic Knee and Ankle Prosthesis Under Shared Neural Control.
Hunt G, Hood S, Lenzi T
IEEE Open J Eng Med Biol. 2022; 2:267-277.
PMID: 35402979
PMC: 8901006.
DOI: 10.1109/OJEMB.2021.3104261.
A Multimodal Sensory Apparatus for Robotic Prosthetic Feet Combining Optoelectronic Pressure Transducers and IMU.
Fiumalbi T, Martini E, Papapicco V, DellAgnello F, Mazzarini A, Baldoni A
Sensors (Basel). 2022; 22(5).
PMID: 35270877
PMC: 8914932.
DOI: 10.3390/s22051731.
Design of an Underactuated Powered Ankle and Toe Prosthesis.
Gabert L, Tran M, Lenzi T
Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021:4920-4923.
PMID: 34892311
PMC: 9006866.
DOI: 10.1109/EMBC46164.2021.9629842.
Taking Both Sides: Seeking Symbiosis Between Intelligent Prostheses and Human Motor Control during Locomotion.
Huang H, Si J, Brandt A, Li M
Curr Opin Biomed Eng. 2021; 20.
PMID: 34458654
PMC: 8388605.
DOI: 10.1016/j.cobme.2021.100314.
Powered knee and ankle prosthesis with indirect volitional swing control enables level-ground walking and crossing over obstacles.
Mendez J, Hood S, Gunnel A, Lenzi T
Sci Robot. 2020; 5(44).
PMID: 33022611
PMC: 8020725.
DOI: 10.1126/scirobotics.aba6635.
Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee.
Sup F, Varol H, Mitchell J, Withrow T, Goldfarb M
IEEE Int Conf Rehabil Robot. 2010; 2009:638-644.
PMID: 20228944
PMC: 2836171.
DOI: 10.1109/ICORR.2009.5209625.