» Articles » PMID: 33790527

A Compact, Lightweight Robotic Ankle-Foot Prosthesis: Featuring a Powered Polycentric Design

Overview
Date 2021 Apr 1
PMID 33790527
Citations 17
Authors
Affiliations
Soon will be listed here.
Citing Articles

Exploring Synergies in Brain-Machine Interfaces: Compression vs. Performance.

Cubillos L, Kelberman M, Mender M, Hite A, Temmar H, Willsey M bioRxiv. 2025; .

PMID: 39975237 PMC: 11838491. DOI: 10.1101/2025.02.03.636273.


Intelligent ankle-foot prosthesis based on human structure and motion bionics.

Li B, Xu G, Teng Z, Luo D, Pei J, Chen R J Neuroeng Rehabil. 2024; 21(1):119.

PMID: 39003459 PMC: 11245770. DOI: 10.1186/s12984-024-01414-w.


A low-power ankle-foot prosthesis for push-off enhancement.

Mazzarini A, Fantozzi M, Papapicco V, Fagioli I, Lanotte F, Baldoni A Wearable Technol. 2024; 4:e18.

PMID: 38487780 PMC: 10936261. DOI: 10.1017/wtc.2023.13.


A passive mechanism for decoupling energy storage and return in ankle-foot prostheses: A case study in recycling collision energy.

Quraishi H, Shepherd M, McManus L, Harlaar J, Plettenburg D, Rouse E Wearable Technol. 2024; 2:e9.

PMID: 38486628 PMC: 10936356. DOI: 10.1017/wtc.2021.7.


A Review of Current State-of-the-Art Control Methods for Lower-Limb Powered Prostheses.

Gehlhar R, Tucker M, Young A, Ames A Annu Rev Control. 2023; 55:142-164.

PMID: 37635763 PMC: 10449377. DOI: 10.1016/j.arcontrol.2023.03.003.


References
1.
Bovi G, Rabuffetti M, Mazzoleni P, Ferrarin M . A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture. 2010; 33(1):6-13. DOI: 10.1016/j.gaitpost.2010.08.009. View

2.
Cherelle P, Grosu V, Matthys A, Vanderborght B, Lefeber D . Design and Validation of the Ankle Mimicking Prosthetic (AMP-) Foot 2.0. IEEE Trans Neural Syst Rehabil Eng. 2013; 22(1):138-48. DOI: 10.1109/TNSRE.2013.2282416. View

3.
Narang Y, Arelekatti V, Winter A . The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics. IEEE Trans Neural Syst Rehabil Eng. 2015; 24(7):754-63. DOI: 10.1109/TNSRE.2015.2455054. View

4.
Shepherd M, Rouse E . The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness. IEEE Trans Neural Syst Rehabil Eng. 2017; 25(12):2375-2386. DOI: 10.1109/TNSRE.2017.2750113. View

5.
Lenzi T, Hargrove L, Sensinger J . Minimum jerk swing control allows variable cadence in powered transfemoral prostheses. Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2014:2492-5. DOI: 10.1109/EMBC.2014.6944128. View