Naseri A, Grimmer M, Seyfarth A, Ahmad Sharbafi M
Wearable Technol. 2024; 1:e6.
PMID: 39050271
PMC: 11265316.
DOI: 10.1017/wtc.2020.6.
Mroz S, Baddour N, Dumond P, Lemaire E
J Rehabil Assist Technol Eng. 2024; 11:20556683241248584.
PMID: 38694842
PMC: 11062215.
DOI: 10.1177/20556683241248584.
Ghillebert J, Geeroms J, Flynn L, De Bock S, Govaerts R, Lathouwers E
Wearable Technol. 2024; 2:e15.
PMID: 38486632
PMC: 10936386.
DOI: 10.1017/wtc.2021.15.
Cortino R, Best T, Gregg R
IEEE Trans Med Robot Bionics. 2024; 6(1):175-188.
PMID: 38304755
PMC: 10829527.
DOI: 10.1109/tmrb.2023.3328656.
Maikos J, Pruziner A, Hendershot B, Herlihy D, Chomack J, Hyre M
JMIR Res Protoc. 2024; 13:e53412.
PMID: 38277197
PMC: 10858430.
DOI: 10.2196/53412.
Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Adaptive Speed and Incline Walking.
Best T, Welker C, Rouse E, Gregg R
IEEE Trans Robot. 2023; 39(3):2151-2169.
PMID: 37304232
PMC: 10249435.
DOI: 10.1109/tro.2022.3226887.
Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Sit, Stand, and Walk with Minimal Tuning.
Welker C, Best T, Gregg R
Rep U S. 2023; 2022:9660-9667.
PMID: 36684038
PMC: 9850431.
DOI: 10.1109/iros47612.2022.9982037.
Effect of Increasing Assistance From a Powered Prosthesis on Weight-Bearing Symmetry, Effort, and Speed During Stand-Up in Individuals With Above-Knee Amputation.
Hunt G, Hood S, Gabert L, Lenzi T
IEEE Trans Neural Syst Rehabil Eng. 2022; 31:11-21.
PMID: 36240032
PMC: 10079568.
DOI: 10.1109/TNSRE.2022.3214806.
Design optimization of powered ankle prosthesis to reduce peak power requirement.
Bilal M, Rizwan M, Maqbool H, Ahsan M, Raza A
Sci Prog. 2022; 105(3):368504221117895.
PMID: 35938190
PMC: 10364942.
DOI: 10.1177/00368504221117895.
Direct continuous electromyographic control of a powered prosthetic ankle for improved postural control after guided physical training: A case study.
Fleming A, Huang S, Buxton E, Hodges F, Huang H
Wearable Technol. 2021; 2.
PMID: 34532707
PMC: 8443146.
DOI: 10.1017/wtc.2021.2.
Human Lower Limb Joint Biomechanics in Daily Life Activities: A Literature Based Requirement Analysis for Anthropomorphic Robot Design.
Grimmer M, Elshamanhory A, Beckerle P
Front Robot AI. 2021; 7:13.
PMID: 33501182
PMC: 7805781.
DOI: 10.3389/frobt.2020.00013.
Development and Performance Verification of a Motorized Prosthetic Leg for Stair Walking.
Park K, Ahn H, Lee K, Lee C
Appl Bionics Biomech. 2020; 2020:8872362.
PMID: 33178333
PMC: 7609156.
DOI: 10.1155/2020/8872362.
An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury.
Wu A, Dzeladini F, Brug T, Tamburella F, Tagliamonte N, van Asseldonk E
Front Neurorobot. 2017; 11:30.
PMID: 28676752
PMC: 5476695.
DOI: 10.3389/fnbot.2017.00030.
Preliminary Experiments with a Unified Controller for a Powered Knee-Ankle Prosthetic Leg Across Walking Speeds.
Quintero D, Villarreal D, Gregg R
Rep U S. 2017; 2016:5427-5433.
PMID: 28392969
PMC: 5381823.
DOI: 10.1109/IROS.2016.7759798.
A powered prosthetic ankle joint for walking and running.
Grimmer M, Holgate M, Holgate R, Boehler A, Ward J, Hollander K
Biomed Eng Online. 2017; 15(Suppl 3):141.
PMID: 28105953
PMC: 5249039.
DOI: 10.1186/s12938-016-0286-7.
Active lower limb prosthetics: a systematic review of design issues and solutions.
Windrich M, Grimmer M, Christ O, Rinderknecht S, Beckerle P
Biomed Eng Online. 2017; 15(Suppl 3):140.
PMID: 28105948
PMC: 5249019.
DOI: 10.1186/s12938-016-0284-9.
Effects of sensory augmentation on postural control and gait symmetry of transfemoral amputees: a case description.
Pagel A, Arieta A, Riener R, Vallery H
Med Biol Eng Comput. 2016; 54(10):1579-89.
PMID: 26718557
DOI: 10.1007/s11517-015-1432-2.
Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes.
Simon A, Ingraham K, Fey N, Finucane S, Lipschutz R, Young A
PLoS One. 2014; 9(6):e99387.
PMID: 24914674
PMC: 4051756.
DOI: 10.1371/journal.pone.0099387.
Monitoring functional capability of individuals with lower limb amputations using mobile phones.
Albert M, McCarthy C, Valentin J, Herrmann M, Kording K, Jayaraman A
PLoS One. 2013; 8(6):e65340.
PMID: 23750254
PMC: 3672103.
DOI: 10.1371/journal.pone.0065340.
Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
Zhang F, Liu M, Huang H
Annu Int Conf IEEE Eng Med Biol Soc. 2013; 2012:2768-71.
PMID: 23366499
PMC: 3686281.
DOI: 10.1109/EMBC.2012.6346538.