» Articles » PMID: 33778148

Predicting Amyloid Risk by Machine Learning Algorithms Based on the A4 Screen Data: Application to the Japanese Trial-Ready Cohort Study

Abstract

Background: Selecting cognitively normal elderly individuals with higher risk of brain amyloid deposition is critical to the success of prevention trials for Alzheimer's disease (AD).

Methods: Based on the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease study data, we built machine-learning models and applied them to our ongoing Japanese Trial-Ready Cohort (J-TRC) webstudy participants registered within the first 9 months ( = 3081) of launch to predict standard uptake value ratio (SUVr) of amyloid positron emission tomography.

Results: Age, family history, online Cognitive Function Instrument and CogState scores were important predictors. In a subgroup of J-TRC webstudy participants with known amyloid status ( = 37), the predicted SUVr corresponded well with the self-reported amyloid test results (area under the curve = 0.806 [0.619-0.992]).

Discussion: Our algorithms may be usable for automatic prioritization of candidate participants with higher amyloid risks to be preferentially recruited from the J-TRC webstudy to in-person study, maximizing efficiency for the identification of preclinical AD participants.

Citing Articles

Blood-based biomarker prescreening with different testing combinations and cutoffs: A simulation study examining efficacy and cost-effectiveness in Alzheimer's disease prevention studies.

Sato K, Niimi Y, Ihara R, Iwata A, Suzuki K, Iwatsubo T Alzheimers Dement (N Y). 2025; 11(1):e70065.

PMID: 40065919 PMC: 11891560. DOI: 10.1002/trc2.70065.


Public perceptions related to healthcare preparedness to anti-amyloid therapies for Alzheimer's Disease in Japan.

Sato K, Niimi Y, Ihara R, Iwata A, Suzuki K, Nemoto K Alzheimers Res Ther. 2024; 16(1):205.

PMID: 39358780 PMC: 11448067. DOI: 10.1186/s13195-024-01568-8.


Artificial intelligence for optimizing recruitment and retention in clinical trials: a scoping review.

Lu X, Yang C, Liang L, Hu G, Zhong Z, Jiang Z J Am Med Inform Assoc. 2024; 31(11):2749-2759.

PMID: 39259922 PMC: 11491624. DOI: 10.1093/jamia/ocae243.


Combining plasma Aβ and p-tau217 improves detection of brain amyloid in non-demented elderly.

Niimi Y, Janelidze S, Sato K, Tomita N, Tsukamoto T, Kato T Alzheimers Res Ther. 2024; 16(1):115.

PMID: 38778353 PMC: 11112892. DOI: 10.1186/s13195-024-01469-w.


Predicting positron emission tomography brain amyloid positivity using interpretable machine learning models with wearable sensor data and lifestyle factors.

Kimura N, Aota T, Aso Y, Yabuuchi K, Sasaki K, Masuda T Alzheimers Res Ther. 2023; 15(1):212.

PMID: 38087316 PMC: 10714506. DOI: 10.1186/s13195-023-01363-x.


References
1.
Cummings J . The National Institute on Aging-Alzheimer's Association Framework on Alzheimer's disease: Application to clinical trials. Alzheimers Dement. 2018; 15(1):172-178. PMC: 6417790. DOI: 10.1016/j.jalz.2018.05.006. View

2.
Sperling R, Rentz D, Johnson K, Karlawish J, Donohue M, Salmon D . The A4 study: stopping AD before symptoms begin?. Sci Transl Med. 2014; 6(228):228fs13. PMC: 4049292. DOI: 10.1126/scitranslmed.3007941. View

3.
Christodoulou E, Ma J, Collins G, Steyerberg E, Verbakel J, Van Calster B . A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019; 110:12-22. DOI: 10.1016/j.jclinepi.2019.02.004. View

4.
Langford O, Raman R, Sperling R, Cummings J, Sun C, Jimenez-Maggiora G . Predicting Amyloid Burden to Accelerate Recruitment of Secondary Prevention Clinical Trials. J Prev Alzheimers Dis. 2020; 7(4):213-218. PMC: 7745538. DOI: 10.14283/jpad.2020.44. View

5.
Jack Jr C, Knopman D, Jagust W, Petersen R, Weiner M, Aisen P . Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013; 12(2):207-16. PMC: 3622225. DOI: 10.1016/S1474-4422(12)70291-0. View